微积分A(2)期末复习笔记

微积分A(2)期末复习笔记,仅供参考。 PDF版本链接

网页较大预警。如果公式解析不正确请刷新页面。长时间加载不出来建议打开PDF用Ctrl+S键下载到本地。流量访问请谨慎。

多元函数定义

内积: x,yRnx,y \in \mathbb R^n, x,y=i=1nxiyi\langle x,y \rangle = \sum_{i=1}^n x_iy_i.

范数: N:RnR\forall N: \mathbb R^n \to \mathbb R s.t.: λR,x,yRn\forall \lambda \in \mathbb R,x,y \in \mathbb R^n,

  1. N(x)0N(x) \ge 0N(x)=0x=0N(x)=0 \Leftrightarrow x=0.
  2. N(λx)=λN(x)N(\lambda x) = \vert \lambda \vert N(x).
  3. N(x+y)N(x)+N(y)N(x+y) \le N(x)+N(y).

nn维空间范数等价性:
N,MN,MRn\mathbb R^n中任意两个范数, α,βR\exists \alpha, \beta \in \mathbb R s.t.: xRn\forall x \in \mathbb R^n,

αM(x)N(x)βM(x)\alpha M(x) \le N(x) \le \beta M(x)

因此通常只考虑2-范数: x=x,x\| x \| = \sqrt{\langle x,x \rangle}.

三角不等式:

x+yx+y\| x+y \| \le \| x \| + \| y \|

Cauchy-Schwarz不等式:

x,yxy\vert \langle x,y \rangle \vert \le \| x \| \cdot \| y \|


距离: x,yRn,Ω,ΛRnx,y \in \mathbb R^n, \Omega, \Lambda \subseteq \mathbb R^n,

  1. dis(x,y)=xy\text{dis}(x,y) = \| x-y \|
  2. dis(Ω,y)=inf{xyxΩ}\text{dis}(\Omega,y) = \inf \left\lbrace \| x-y \| \Big \vert x \in \Omega \right \rbrace
  3. dis(Ω,Λ)=inf{xyxΩ,yΛ}\text{dis}(\Omega,\Lambda) = \inf \left\lbrace \| x-y \| \Big \vert x \in \Omega, y \in \Lambda \right \rbrace

直径: diam(Ω)=sup{xyx,yΩ}\text{diam}(\Omega) = \text{sup} \left\lbrace \| x-y \| \Big \vert x, y \in \Omega \right \rbrace.

邻域: x0Rn,δRx_0 \in \mathbb R^n, \delta \in \mathbb R,

  1. B(x0,δ)={xdis(x,x0)<δ}B(x_0,\delta) = \lbrace x \vert \text{dis}(x,x_0) \lt \delta \rbrace.
  2. B0(x0,δ)={x0<dis(x,x0)<δ}B_0(x_0,\delta) = \lbrace x \vert 0 \lt \text{dis}(x,x_0) \lt \delta \rbrace.

补集: Ωc=RnΩ\Omega^c = \mathbb R^n \setminus \Omega.

内点: δ>0,B(x0,δ)Ω\exists \delta \gt 0, B(x_0,\delta) \subseteq \Omega, 则x0Ω0x_0 \in \Omega_0.

外点: δ>0,B(x0,δ)Ω=\exists \delta \gt 0, B(x_0,\delta) \bigcap \Omega = \varnothing, 则x0Ω0c=Ωx_0 \in \Omega_0^c = \overline \Omega.

孤立点: x0Ω,δ>0,B0(x0,δ)=x_0 \in \Omega, \exists \delta \gt 0, B_0(x_0,\delta) = \varnothing, 则x0x_0为孤立点.

边界点: δ>0,B(x0,δ)Ω and B(x0,δ)ΩB(x0,δ)\forall \delta \gt 0, B(x_0,\delta) \bigcap \Omega \ne \varnothing \text{ and } B(x_0,\delta) \bigcap \Omega \ne B(x_0,\delta), 则x0x_0为边界点.

聚点: δ>0,B(x0,δ)Ω\forall \delta \gt 0, B(x_0,\delta) \bigcap \Omega \ne \varnothing, 则x0Ωx_0 \in \Omega'.

闭包: Cl(Ω)=ΩΩ\text{Cl}(\Omega) = \Omega' \bigcup \Omega.

xx为非聚点, x∉Ωx \not \in \Omega, 则xx为外点.
xx为非聚点, xΩx \in \Omega, 则xx为孤立点.

开集: Ω\Omega s.t.: Ω=Ω0\Omega = \Omega_0.

闭集: Ω\Omega s.t.: Ω=Ω\Omega = \overline \Omega.

有界集: Ω\Omega s.t.: r>0,ΩB(0,r)\exists r \gt 0, \Omega \subseteq B(0,r).

Rn\mathbb R^n\varnothing既开又闭.
开集的并是开集, 有限个开集的交是开集.
闭集的交是闭集, 有限个闭集的并是闭集.


点列收敛: {xi}\lbrace x_i \rbraceRn\mathbb R^n中点列, 若limixix0=0\lim_{i\to\infty} \| x_i-x_0 \| = 0, 则limixi=x0\lim_{i\to\infty} x_i = x_0.

收敛点列极限唯一.

Cauchy列(基本列): ε>0,N>0,l,kN+,l,k>0\forall \varepsilon \gt 0, \exists N \gt 0, \forall l,k \in \mathbb N_+, l,k \gt 0, xkxl<ε\| x_k-x_l \| \lt \varepsilon.

基本列 \Leftrightarrow 收敛.

Ω\Omega为闭集, {xi}Ω\lbrace x_i \rbrace \subseteq \Omegalimixi\lim_{i\to\infty} x_i存在, 则limixiΩ\lim_{i\to\infty} x_i \in \Omega. 特别地, 因为Rn\mathbb R^n为闭集, 所以Rn\mathbb R^n具有完备性.

连通集: x,yΩ\forall x,y \in \Omega, φiC[a,b]\exists \varphi_i \in \mathscr C[a,b], φi(a)=x(i),φi(b)=y(i)\varphi_i(a) = x^{(i)}, \varphi_i(b) = y^{(i)}. 连通非空开集为开区域, 开区域闭包为闭区域.

二元函数: f:ΩRf:\Omega \to \mathbb R s.t.: ΩR2,(x,y)Ω,!zR,z=f(x,y)\Omega \subseteq \mathbb R^2, \forall (x,y) \in \Omega, \exists! z \in \mathbb R, z = f(x,y).


二元函数极限与连续

二重极限: p0ΩR2p_0 \in \Omega \subseteq \mathbb R^2为聚点, 二元函数ff定义在B0(p0,δ0)ΩB_0(p_0,\delta_0) \bigcap \Omega上, 若AR,ε>0,0<δ<δ0,pB0(p0,δ0)Ω\exists A \in \mathbb R, \forall \varepsilon \gt 0, \exists 0 \lt \delta \lt \delta_0, p \in B_0(p_0,\delta_0) \bigcap \Omega, 都有: f(p)A<ε\vert f(p)-A \vert \lt \varepsilon, 则limpp0pΩ=A\lim_{p\to p_0 \atop p\in\Omega} = A. 若p0p_0Ω\Omega内点, 则可简记为limpp0f(p)=limpp00f(p)=limxx0yy0f(x,y)=A\lim_{p \to p_0} f(p) = \lim_{\| p-p_0 \| \to 0} f(p) = \lim_{x\to x_0 \atop y\to y_0} f(x,y) = A.

若二重极限存在, 则任意路径趋近于p0p_0, 极限值相同.

累次极限: limxx0limyy0f(x,y)\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)limyy0limxx0f(x,y)\lim_{y \to y_0} \lim_{x \to x_0} f(x,y).

若二重极限和累次极限均存在, 则相等.
若累次极限不相等, 则二重极限不存在.


连续: ε>0,δ>0,pB(p0,δ)D(f)\forall \varepsilon \gt 0, \exists \delta \gt 0, \forall p \in B(p_0,\delta) \bigcap D(f), 都有f(p)f(p0)<ε\vert f(p)-f(p_0) \vert \lt \varepsilon, 则ffp0p_0处连续.
否则ffp0p_0处间断, p0p_0ff间断点. limpp0f(p)\lim_{p \to p_0}f(p)存在但不等于f(p0)f(p_0)则为可去间断点, 不存在则为本性间断点.

ffp0p_0二重极限存在, 则ffp0p_0处连续.
p0p_0D(f)D(f)聚点, ffp0p_0处连续 \Leftrightarrow ffp0p_0二重极限为f(p0)f(p_0).
p0p_0D(f)D(f)孤立点, ffp0p_0处必连续.
p0p_0ff间断点, p0p_0必为D(f)D(f)聚点.
p0p_0ff连续, 则一元函数f(x,y0)f(x,y_0)f(x0,y)f(x_0,y)(x0,y0)(x_0,y_0)处连续.

ff在开集DD上连续或在闭集DD内部和边界点上连续, 则fC(D)f \in \mathscr C(D).

ff在连通集DD上连续, 则ffDD上最值存在.


二元函数导数

偏导数:

fx(p0)=fxp0=limΔx0f(x0+Δx,y0)f(x0,y0)Δxfy(p0)=fyp0=limΔy0f(x0,y0+Δy)f(x0,y0)Δy\begin{aligned} f'_x(p_0) &= \left.\frac{\partial f}{\partial x}\right\vert_{p_0} = \lim_{\Delta x \to 0} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} \\ f'_y(p_0) &= \left.\frac{\partial f}{\partial y}\right\vert_{p_0} = \lim_{\Delta y \to 0} \frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} \\ \end{aligned}

全微分:

Δf(p0)=fx(p0)Δx+fy(p0)Δy+o(Δx2+Δy2)o(ρ)df(p0)=fx(p0)  dx+fy(p0)  dy\begin{aligned} \Delta f(p_0) &= f'_x(p_0)\Delta x + f'_y(p_0)\Delta y + \underbrace{o\left(\sqrt{\Delta x^2+\Delta y^2}\right)}_{o(\rho)} \\ \text{d}f(p_0) &= f'_x(p_0)\;\text{d}x + f'_y(p_0)\;\text{d}y \\ \end{aligned}

可微 \Rightarrow 连续, 偏导存在
偏导连续 \Rightarrow 可微

可微的充要条件:

limpp0f(x+Δx,y+Δy)f(x,y)fx(p0)Δxfy(p0)ΔyΔx2+Δy2=0\lim_{p \to p_0} \frac{f(x+\Delta x,y+\Delta y)-f(x,y)-f'_x(p_0)\Delta x-f'_y(p_0)\Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} = 0

复合函数求导:
z=f(x,y)=f(x(t,s),y(t,s))z = f(x,y) = f(x(t,s),y(t,s)):

zt=fxxt+fyytzs=fxxs+fyys\begin{aligned} \frac{\partial z}{\partial t} &= \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t} \\ \frac{\partial z}{\partial s} &= \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s} \\ \end{aligned}


高阶偏导数:

fxx(p0)=2fx2p0=limΔx0fx(x0+Δx,y0)fx(x0,y0)Δxfxy(p0)=2fyxp0=limΔy0fx(x0,y0+Δy)fx(x0,y0)Δyfyx(p0)=2fxyp0=limΔx0fy(x0+Δx,y0)fy(x0,y0)Δxfyy(p0)=2fy2p0=limΔy0fy(x0,y0+Δy)fy(x0,y0)Δy\begin{aligned} f''_{xx}(p_0) &= \left.\frac{\partial^2 f}{\partial x^2}\right\vert_{p_0} = \lim_{\Delta x \to 0} \frac{f'_x(x_0+\Delta x,y_0)-f'_x(x_0,y_0)}{\Delta x} \\ f''_{xy}(p_0) &= \left.\frac{\partial^2 f}{\partial y \partial x}\right\vert_{p_0} = \lim_{\Delta y \to 0} \frac{f'_x(x_0,y_0+\Delta y)-f'_x(x_0,y_0)}{\Delta y} \\ f''_{yx}(p_0) &= \left.\frac{\partial^2 f}{\partial x \partial y}\right\vert_{p_0} = \lim_{\Delta x \to 0} \frac{f'_y(x_0+\Delta x,y_0)-f'_y(x_0,y_0)}{\Delta x} \\ f''_{yy}(p_0) &= \left.\frac{\partial^2 f}{\partial y^2}\right\vert_{p_0} = \lim_{\Delta y \to 0} \frac{f'_y(x_0,y_0+\Delta y)-f'_y(x_0,y_0)}{\Delta y} \\ \end{aligned}

fxy,fyxf''_{xy},f''_{yx}p0p_0处连续, 则fxy(p0)=fyx(p0)f''_{xy}(p_0)=f''_{yx}(p_0).


方向导数: 对于eR2,e=1e \in \mathbb R^2, \| e \| = 1, 可定义:

fe(p0)=fep0=limt0+f(p0+te)f(p0)t=d[f(p0+te)]dtf'_e(p_0) = \left.\frac{\partial f}{\partial e}\right\vert_{p_0} = \lim_{t\to0^+} \frac{f(p_0+te)-f(p_0)}{t} = \frac{\text{d} [f(p_0+te)]}{\text{d} t}

注意到上式中ee仅指代射线方向, 即λ>0\forall \lambda \gt 0:

f(λe)p0=fep0\left.\frac{\partial f}{\partial(\lambda e)}\right\vert_{p_0} = \left.\frac{\partial f}{\partial e}\right\vert_{p_0}

可微 \Rightarrow 方向导数存在.
方向导数存在且同一点处反方向导数为正方向导数相反数 \Rightarrow 偏导数存在.

f(e)p0=fep0fip0=fxp0                 if fip0=f(i)p0fjp0=fyp0                 if fjp0=f(j)p0\begin{aligned} \left.\frac{\partial f}{\partial(-e)}\right\vert_{p_0} &= - \left.\frac{\partial f}{\partial e}\right\vert_{p_0} \\ \left.\frac{\partial f}{\partial \vec i}\right\vert_{p_0} &= \left.\frac{\partial f}{\partial x}\right\vert_{p_0} \;\;\;\;\;\;\;\; \text{ if } \left.\frac{\partial f}{\partial \vec i}\right\vert_{p_0} = -\left.\frac{\partial f}{\partial(-\vec i)}\right\vert_{p_0} \\ \left.\frac{\partial f}{\partial \vec j}\right\vert_{p_0} &= \left.\frac{\partial f}{\partial y}\right\vert_{p_0} \;\;\;\;\;\;\;\; \text{ if } \left.\frac{\partial f}{\partial \vec j}\right\vert_{p_0} = -\left.\frac{\partial f}{\partial(-\vec j)}\right\vert_{p_0} \\ \end{aligned}


梯度:

f(p0)=gradf(p0)=(fx(p0),fy(p0))\nabla f(p_0) = \text{grad} f(p_0) = (f'_x(p_0),f'_y(p_0))

fep0=f(p0)e=f(p0)cosf(p0),e\left.\frac{\partial f}{\partial e}\right\vert_{p_0} = \nabla f(p_0) \cdot e = \| \nabla f(p_0) \| \cos \langle \nabla f(p_0), e \rangle


向量值函数与隐函数

向量值函数: f:ΩRmf:\Omega \to \mathbb R^m s.t.: ΩRn,xΩ,!yRm,y=f(x)\Omega \subseteq \mathbb R^n, \forall \vec x \in \Omega, \exists! \vec y \in \mathbb R^m, \vec y = f(\vec x).

连续: fC(Ω)1in,fiC(Ωi)f \in \mathscr C(\Omega) \Leftrightarrow \forall 1 \le i \le n, f_i \in \mathscr C(\Omega_i).

映射微分:

Δf(x)=AΔx+o(Δx)o(ρ)df(x)=Adx\begin{aligned} \Delta f(\vec x) &= A\vec{\Delta x} + \underbrace{o\left(\|\vec{\Delta x} \|\right)}_{o(\rho)} \\ \text{d}f(\vec x) &= A\text{d} \vec x \\ \end{aligned}

其中AMm×n(R)A \in M_{m \times n}(\mathbb R), 满足:

Aij=yixjp0A_{ij} = \left.\frac{\partial y_i}{\partial x_j}\right\vert_{p_0}

AAff的Jacobi矩阵, 记作Jf(x0)=(y1,,ym)(x1,,xn)x0=AJ f(\vec x_0) = \left.\frac{\partial (y_1,\cdots,y_m)}{\partial (x_1,\cdots,x_n)}\right\vert_{\vec x_0} = A.
Φ(x0)(x)=Jf(x0)×x\Phi(\vec x_0)(\vec x) = J f(\vec x_0) \times \vec xffx0\vec x_0的微分映射.
df(x)=Jf(x0)×dx\text{d} f(\vec x) = J f(\vec x_0) \times \text{d} \vec xffx0\vec x_0的微分.

[dy1dy2dym]=(y1,,ym)(x1,,xn)×[dx1dx2dxn]\begin{bmatrix} \text{d}y_1 \\ \text{d}y_2 \\ \cdots \\ \text{d}y_m \\ \end{bmatrix} = \frac{\partial (y_1,\cdots,y_m)}{\partial (x_1,\cdots,x_n)} \times \begin{bmatrix} \text{d}x_1 \\ \text{d}x_2 \\ \cdots \\ \text{d}x_n \\ \end{bmatrix}

复合映射微分:
若向量值函数ffx0\vec x_0处可微, ggu0=f(x0)\vec u_0 = f(\vec x_0)处可微, Im(f)D(g)\text{Im}(f) \subseteq D(g). 则:

J(gf)(x0)=Jg(u0)×Jf(x0)J(g \circ f)(\vec x_0) = J g(\vec u_0) \times J f(\vec x_0)

逆映射微分:

J(ff1)=In×nJf1(y)=(Jf(x))1\begin{aligned} J (f \circ f^{-1}) &= I_{n \times n} \\ J f^{-1}(\vec y) &= \left( J f(\vec x) \right)^{-1} \\ \end{aligned}


隐函数: D(F)=W×ERn×RmD(F) = W \times E \subseteq \mathbb R^n \times \mathbb R^m, xW,!yE\forall \vec x \in W, \exists! y \in E s.t.: F(x,y)=0F(\vec x,y) = 0. 则F(x,y)=0F(\vec x,y)=0确定隐函数y=f(x)y = f(\vec x).

隐函数存在性:
FFWW内有定义, 且:

  1. FC(q)F \in \mathscr C^{(q)}, q1q \ge 1.
  2. p0W×E,F(p0)=0\exists \vec p_0 \in W \times E, F(\vec p_0) = 0.
  3. Fy(p0)0F'_y(\vec p_0) \ne 0.

则: I×JW×E\exists I \times J \subseteq W \times E s.t.: x0I,y0J\vec x_0 \in I, y_0 \in J (i.e.: p0\vec p_0的邻域):

  1. xI\forall \vec x \in I, !y=f(x)J\exists ! y = f(\vec x) \in J. (隐函数存在唯一性)
  2. y0=f(x0)y_0 = f(\vec x_0). (初值条件)
  3. fC(q)(I)f \in \mathscr C^{(q)}(I). (隐函数连续性)
  4. xI\forall \vec x \in I,
f'_j(\vec x) = -\frac{F'_j(\vec p)}{F'_y(\vec p)} $$ (隐函数导数)

若二元函数F(x,y)=0F(x,y)=0确定隐函数f(x)f(x), f1=gf^{-1} = g存在 \Leftrightarrow F(x,y)=0F(x,y)=0确定隐函数g(y)g(y).

隐函数方程组: 1im,Fi(x1,,xn,y1,,ym)=0\forall 1 \le i \le m, F_i(x_1,\cdots,x_n,y_1,\cdots,y_m) = 0, 其中D(Fi)=Wx×WyD(F_i) = W_x \times W_y.

隐函数方程组解存在性:
FFWxW_x内有定义, 且: 1im\forall 1 \le i \le m,

  1. FC(q)F \in \mathscr C^{(q)}, q1q \ge 1.
  2. p0Wx×Wy,Fi(p0)=0\exists p_0 \in W_x \times W_y, F_i(\vec p_0) = 0.
  3. (F1,,Fm)(y1,,ym)p0\left.\frac{\partial (F_1,\cdots,F_m)}{\partial (y_1,\cdots,y_m)}\right\vert_{\vec p_0}可逆.

则: p0\exists \vec p_0的邻域Ix×IyI_x \times I_y: 1im\forall 1 \le i \le m,

  1. xIx,!y\forall \vec x \in I_x, \exists! \vec y s.t.: Fi(x,y)=0F_i(\vec x,\vec y) = 0. 可以相应定义定义yi=(y)i=fi(x)y_i = (\vec y)_i = f_i(\vec x).
  2. (y0)i=fi(x0)(\vec y_0)_i = f_i(\vec x_0).
  3. fiC(q)(Ix)f_i \in \mathscr C^{(q)}(I_x).
  4. xIx\forall \vec x \in I_x,

(y1,,ym)(x1,,xn)x=((F1,,Fm)(y1,,ym)p)1×(F1,,Fm)(x1,,xn)x\left.\frac{\partial(y_1,\cdots,y_m)}{\partial(x_1,\cdots,x_n)}\right\vert_{\vec x} = -\left( \left.\frac{\partial (F_1,\cdots,F_m)}{\partial (y_1,\cdots,y_m)}\right\vert_{\vec p} \right)^{-1} \times \left.\frac{\partial(F_1,\cdots,F_m)}{\partial(x_1,\cdots,x_n)}\right\vert_{\vec x}


空间曲线和曲面

空间曲线切向量: p=tτ\vec p = t \vec \tau, 其中切向量τ=(xt,yt,zt)(p0)\vec \tau = (x'_t,y'_t,z'_t)(\vec p_0). 若空间曲线处处有非零、连续的切向量, 则称空间曲线光滑.

空间曲面切向量与法向量: 曲面S:F(p)=0S:F(\vec p) = 0p0\vec p_0处可微, 且F(p0)0\nabla F(\vec p_0) \ne 0, FF在邻域内连续, 则:

τ,F(t0)=nτ=0\forall \vec \tau, F'(t_0) = \vec n \cdot \vec \tau = 0

其中法向量n=F(p0)=(Fx,Fy,Fz)(p0)\vec n = \nabla F(\vec p_0) = (F'_x,F'_y,F'_z)(\vec p_0), 切向量τ=(xt,yt,zt)(p0)\vec \tau = (x'_t,y'_t,z'_t)(\vec p_0)对于任意曲线l:x=x(t),y=y(t),z=z(t)l:x=x(t),y=y(t),z=z(t) s.t: p0lS\vec p_0 \in l \subseteq S.

切向量求切线方程:

xx0τx=yy0τy=zz0τz\frac{x-x_0}{\tau_x} = \frac{y-y_0}{\tau_y} = \frac{z-z_0}{\tau_z}

法向量求法线方程:

xx0nx=yy0ny=zz0nz\frac{x-x_0}{n_x} = \frac{y-y_0}{n_y} = \frac{z-z_0}{n_z}

切向量求法平面方程:

τx(xx0)+τy(yy0)+τz(zz0)=0\tau_x(x-x_0) + \tau_y(y-y_0) + \tau_z(z-z_0) = 0

法向量求切平面方程:

nx(xx0)+ny(yy0)+nz(zz0)=0n_x(x-x_0) + n_y(y-y_0) + n_z(z-z_0) = 0

切向量求法向量(法向量求切向量类似):

n=τ1×τ2=ijkτ1xτ1yτ1zτ2xτ2yτ2z=(det(y,z)(u,v),det(z,x)(u,v),det(x,y)(u,v))\vec n = \vec \tau_1 \times \vec \tau_2 = \left \vert \begin{matrix} \vec i & \vec j & \vec k \\ \tau_{1x} & \tau_{1y} & \tau_{1z} \\ \tau_{2x} & \tau_{2y} & \tau_{2z} \\ \end{matrix} \right \vert = \left( \det \frac{\partial (y,z)}{\partial (u,v)}, \det \frac{\partial (z,x)}{\partial (u,v)}, \det \frac{\partial (x,y)}{\partial (u,v)} \right)

显函数法向量: n=(fx,fy,1)(p0)\vec n = (f'_x,f'_y,-1)(p_0).


二元函数泰勒展开与极值

高阶全微分: 若fC(n)f \in \mathscr C^{(n)},

dnf=(dxx+dyy)nf(x,y)=i=0nCninfxiyni(x,y)dxidyni\text{d}^n f = \left( \text{d}x \cdot \frac{\partial}{\partial x} + \text{d}y \cdot \frac{\partial}{\partial y} \right)^nf(x,y) = \sum_{i=0}^n C_n^i \frac{\partial^n f}{\partial x^i \partial y^{n-i}}(x,y) \cdot \text{d}x^i \cdot \text{d}y^{n-i}

二元函数泰勒展开: 若fC(n)f \in \mathscr C^{(n)},

Tf(x,y)=k=0n1k!((xx0)x+(yy0)y)kf(x0,y0)f(x,y)=Tf(x,y)+Rn\begin{aligned} T_f(x,y) &= \sum_{k=0}^n \frac{1}{k!} \left( (x-x_0) \cdot \frac{\partial}{\partial x} + (y-y_0) \cdot \frac{\partial}{\partial y} \right)^kf(x_0,y_0) \\ f(x,y) &= T_f(x,y) + R_n \\ \end{aligned}

皮亚诺余项: fC(n)f \in \mathscr C^{(n)}, Rn=o((xx0)2+(yy0)2n)R_n = o \left( \sqrt{(x-x_0)^2+(y-y_0)^2}^n \right).
拉格朗日余项: fC(n+1)f \in \mathscr C^{(n+1)}, Rn=1(n+1)!(Δxx+Δyy)n+1f(x0+θΔx,y0+θΔy)R_n = \frac{1}{(n+1)!}\left( \Delta x \cdot \frac{\partial}{\partial x} + \Delta y \cdot \frac{\partial}{\partial y} \right)^{n+1}f(x_0+\theta \Delta x,y_0+\theta \Delta y), θ[0,1]\theta \in [0,1].

e.g.: n=2n=2

f(x,y)=f(x0,y0)+(xx0)fx(x0,y0)+(yy0)fy(x0,y0)+12(xx0)2fxx(x0,y0)+(xx0)(yy0)fxy(x0,y0)+12(yy0)2fyy(x0,y0)+R2\begin{aligned} f(x,y) &= f(x_0,y_0) \\ &+ (x-x_0)f'_x(x_0,y_0) + (y-y_0)f'_y(x_0,y_0) \\ &+ \frac{1}{2}(x-x_0)^2f''_{xx}(x_0,y_0) + (x-x_0)(y-y_0)f''_{xy}(x_0,y_0) + \frac{1}{2}(y-y_0)^2f''_{yy}(x_0,y_0) \\ &+ R_2 \end{aligned}

二元函数微分中值定理: fCf \in \mathscr C, θ[0,1]\theta \in [0,1],

f(x,y)f(x0,y0)=(Δxfx+Δyfy)(x0+θΔx,y0+θΔy)f(x,y)-f(x_0,y_0) = \Big(\Delta xf'_x+\Delta yf'_y\Big)(x_0+\theta\Delta x,y_0+\theta\Delta y)


二元函数极值: B(p0,δ)D(f)B(p_0,\delta) \subseteq D(f), 若pB(p0,δ),f(p)f(p0)\forall p \in B(p_0,\delta), f(p) \le f(p_0), 则p0p_0为极大值点, f(p0)f(p_0)为极大值. 极小值点和极小值同理.

极值点 \Rightarrow 内点.
极值点, 偏导存在 \Rightarrow 驻点(临界点).

p0p_0ff驻点, fC(2)(B(p0,δ0))f \in \mathscr C^{(2)}(B(p_0,\delta_0)):

  • fxxfyyfxy2>0f''_{xx}f''_{yy} - {f''_{xy}}^2 \gt 0, p0p_0为极值点
    • fxx>0,fyy>0f''_{xx} \gt 0, f''_{yy} \gt 0, p0p_0为极小值点.
    • fxx<0,fyy<0f''_{xx} \lt 0, f''_{yy} \lt 0, p0p_0为极大值点.
  • fxxfyyfxy2<0f''_{xx}f''_{yy} - {f''_{xy}}^2 \lt 0, p0p_0不为极值点
  • fxxfyyfxy2=0f''_{xx}f''_{yy} - {f''_{xy}}^2 = 0, 无法确定
    • 0<δ<δ0,pB(p0,δ)\exists 0 \lt \delta \lt \delta_0, \forall p \in B(p_0,\delta), fxxfyyfxy20f''_{xx}f''_{yy} - {f''_{xy}}^2 \ge 0, 则为极值点, 按照第一条方式判断.

一般地, 对于nn原函数, 判断Hessian矩阵Hf(p0)H_f(p_0):

[fx1x1fx1x2fx1x3fx1xnfx2x1fx2x2fx2x3fx2xnfx3x1fx3x2fx3x3fx3xnfxnx1fxnx2fxnx3fxnxn]\begin{bmatrix} f''_{x_1x_1} & f''_{x_1x_2} & f''_{x_1x_3} & \cdots & f''_{x_1x_n} \\ f''_{x_2x_1} & f''_{x_2x_2} & f''_{x_2x_3} & \cdots & f''_{x_2x_n} \\ f''_{x_3x_1} & f''_{x_3x_2} & f''_{x_3x_3} & \cdots & f''_{x_3x_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f''_{x_nx_1} & f''_{x_nx_2} & f''_{x_nx_3} & \cdots & f''_{x_nx_n} \\ \end{bmatrix}

若正定或在邻域内连续半正定, 则为极小值点; 若负定或在邻域内连续半负定, 则为极大值点.


最小二乘法求回归直线:

[kb]=[i=1nxi2i=1nxii=1nxin]1[i=1nxiyii=1nyi]=1Var[x][1E[x]E[x]E[x2]][i=1nxiyii=1nyi]\begin{bmatrix} k \\ b \\ \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n x_i^2 & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & n \\ \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^n x_iy_i \\ \sum_{i=1}^n y_i \\ \end{bmatrix} = \frac{1}{\text{Var}[x]} \begin{bmatrix} 1 & -\mathbb E[x] \\ -\mathbb E[x] & \mathbb E[x^2] \\ \end{bmatrix} \begin{bmatrix} \sum_{i=1}^n x_iy_i \\ \sum_{i=1}^n y_i \\ \end{bmatrix}


拉格朗日乘子法求条件极值: 求f(x,y)f(x,y)φ(x,y)=0\varphi(x,y)=0条件下的极值, 可构造拉格朗日函数并求解其驻点:

L(x,y,λ)=f(x,y)+λφ(x,y)L(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y)


含参定积分

一致连续: ε>0,δ>0,p1,p2Ω,p1p2<δ\forall \varepsilon \gt 0, \exists \delta \gt 0, \forall p_1,p_2 \in \Omega, \| p_1-p_2 \| \lt \delta, 都有f(p1)f(p2)<ε\vert f(p_1)-f(p_2) \vert \lt \varepsilon, 则ffΩ\Omega上一致连续.

有界闭集上连续则一致连续.

含参定积分: II为任意区间, D=[a,b]×ID(f)D = [a,b] \times I \subseteq D(f), 若uI\forall u \in I, φ(u)=abf(x,u)  dx\varphi(u) = \int_a^b f(x,u)\;\text{d}x存在, 则称其为ff含参uu的定积分.

连续性: fC(D)f \in \mathscr C(D) \Rightarrow φC(I)\varphi \in \mathscr C(I), 即:

limuu0φ(u)=limuu0abf(x,u)  dx=ablimuu0f(x,u)  dx=φ(u0)\lim_{u\to u_0}\varphi(u) = \lim_{u\to u_0} \int_a^b f(x,u) \;\text{d}x = \int_a^b \lim_{u\to u_0} f(x,u) \;\text{d}x = \varphi(u_0)

可导性: fuC(D)f'_u \in \mathscr C(D) \Rightarrow φ\varphi'存在且:

φ(u)=abfu(x,u)  dx\varphi'(u) = \int_a^b f'_u(x,u) \;\text{d}x

可积性: fC(D)f \in \mathscr C(D) \Rightarrow φR(I)\varphi \in \mathscr R(I)且:

αβφ(u)  du=αβabf(x,u)  dx  du=abαβf(x,u)  du  dx\int_\alpha^\beta\varphi(u)\;\text{d}u = \int_\alpha^\beta \int_a^b f(x,u) \;\text{d}x \;\text{d}u = \int_a^b \int_\alpha^\beta f(x,u) \;\text{d}u \;\text{d}x

变限积分: fuC(D)f'_u \in \mathscr C(D), a(u),b(u)C[a,b]a(u),b(u) \in \mathscr C[a,b][α,β][\alpha,\beta]上可导 \Rightarrow φ\varphi'[α,β][\alpha,\beta]上存在且:

φ(u)=a(u)b(u)fu(x,u)  dx+b(u)f(b(u),u)a(u)f(a(u),u)\varphi'(u) = \int_{a(u)}^{b(u)} f'_u(x,u) \;\text{d}x + b'(u) \cdot f(b(u),u) - a'(u) \cdot f(a(u),u)


含参广义积分: II为任意区间, D=[a,+)×ID(f)D = [a,+\infty) \times I \subseteq D(f), 若uI\forall u \in I, φ(u)=a+f(x,u)  dx\varphi(u) = \int_a^{+\infty} f(x,u)\;\text{d}x存在, 则称其为ff含参uu的无穷积分.

一致收敛: ε>0,A0>a,A>A0,uI\forall \varepsilon \gt 0, \exists A_0 \gt a, \forall A \gt A_0, u \in I, 都有A+f(x,u)  dx<ε\vert \int_A^{+\infty}f(x,u)\;\text{d}x \vert \lt \varepsilon, 则a+f(x,u)  dx\int_a^{+\infty}f(x,u)\;\text{d}xII上一致收敛.

一致收敛Cauchy原理:
a+f(x,u)  dx\int_a^{+\infty}f(x,u)\;\text{d}xII上一致收敛 \Leftrightarrow ε>0,A0>a,A1,A2>A0,uI\forall \varepsilon \gt 0, \exists A_0 \gt a, \forall A_1,A_2 \gt A_0, u \in I, 都有A1A2f(x)  dx<ε\vert \int_{A_1}^{A_2} f(x)\;\text{d}x \vert \lt \varepsilon.

Weierstrass判别法:
D=[a,+)×ID(f)D = [a,+\infty) \times I \subseteq D(f), fC[a,+)f \in \mathscr C[a,+\infty). 若FC[a,+)\exists F \in \mathscr C[a,+\infty) s.t: (x,u)D,f(x)F(x)\forall (x,u) \in D, f(x) \le F(x)a+F(x)  dx\int_a^{+\infty} F(x)\;\text{d}x收敛, 则a+f(x,u)  dx\int_a^{+\infty} f(x,u)\;\text{d}xII上一致收敛.

积分第二中值定理:
f,gC([a,b]×I),gxC([a,b]×I)f,g \in \mathscr C([a,b] \times I), g'_x \in \mathscr C([a,b] \times I), 若gg关于xx单调, 则ξ(a,b)\exists \xi \in (a,b) s.t.:

abf(x,u)g(x,u)  dx=g(a,u)aξf(x,u)  dx+g(b,u)ξbf(x,u)  dx\int_a^b f(x,u)g(x,u) \;\text{d}x = g(a,u)\int_a^\xi f(x,u) \;\text{d}x + g(b,u)\int_\xi^b f(x,u) \;\text{d}x

Dirichlet判别法:
f,gC([a,b]×I)f,g \in \mathscr C([a,b] \times I), 若:

  1. a+f(x,u)  dx\int_a^{+\infty} f(x,u)\;\text{d}x关于uIu \in I一致有界.
  2. gg关于xx单调且关于uIu \in I一致趋于00.

abf(x,u)g(x,u)  dx\int_a^b f(x,u)g(x,u) \;\text{d}xII上一致收敛.

Abel判别法:
f,gC([a,b]×I)f,g \in \mathscr C([a,b] \times I), 若:

  1. a+f(x,u)  dx\int_a^{+\infty} f(x,u)\;\text{d}x关于uIu \in I一致收敛.
  2. gg关于xx单调且关于uIu \in I一致有界.

abf(x,u)g(x,u)  dx\int_a^b f(x,u)g(x,u) \;\text{d}xII上一致收敛.

局部一致收敛: u0I,δ>0\forall u_0 \in I, \delta \gt 0, 若都有a+f(x,u)  dx\int_a^{+\infty} f(x,u)\;\text{d}x(u0δ,u0+δ)I(u_0-\delta,u_0+\delta) \bigcap I上一致收敛, 则a+f(x,u)  dx\int_a^{+\infty} f(x,u)\;\text{d}xII上局部一致收敛.

连续性: fC(D)f \in \mathscr C(D), φ(u)\varphi(u)II上局部一致收敛 \Rightarrow φC(I)\varphi \in \mathscr C(I), 即:

limuu0φ(u)=limuu0a+f(x,u)  dx=a+limuu0f(x,u)  dx=φ(u0)\lim_{u\to u_0}\varphi(u) = \lim_{u\to u_0} \int_a^{+\infty} f(x,u) \;\text{d}x = \int_a^{+\infty} \lim_{u\to u_0} f(x,u) \;\text{d}x = \varphi(u_0)

可导性: fuC(D)f'_u \in \mathscr C(D), φ(u)\varphi(u)II上一致收敛, a+fu(x,u)  dx\int_a^{+\infty} f'_u(x,u) \;\text{d}xII上局部一致收敛 \Rightarrow φ\varphi'存在且:

φ(u)=a+fu(x,u)  dx\varphi'(u) = \int_a^{+\infty} f'_u(x,u) \;\text{d}x

可积性: fC(D)f \in \mathscr C(D), φ(u)\varphi(u)II上一致收敛 \Rightarrow φR(I)\varphi \in \mathscr R(I)且:

αβφ(u)  du=αβa+f(x,u)  dx  du=a+αβf(x,u)  du  dx\int_\alpha^\beta\varphi(u)\;\text{d}u = \int_\alpha^\beta \int_a^{+\infty} f(x,u) \;\text{d}x \;\text{d}u = \int_a^{+\infty} \int_\alpha^\beta f(x,u) \;\text{d}u \;\text{d}x


Gamma函数: Γ(α)C()(0,+)\Gamma(\alpha) \in \mathscr C^{(\infty)}(0,+\infty),

Γ(α)=0+xα1ex  dx\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1}e^{-x} \;\text{d}x

Γ(n)(α)=0+xα1exlnnx  dx\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha-1}e^{-x} \ln^n x \;\text{d}x

Γ(x+1)=xΓ(x)\Gamma(x+1) = x\Gamma(x)

Γ(n+1)=nΓ(n)=n!2πn(ne)n\Gamma(n+1) = n\Gamma(n) = n! \approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n

Γ(α)Γ(1α)=πsin(απ)\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin(\alpha\pi)}

Γ(12)=0+1xex  dx=π\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{1}{\sqrt x e^x} \;\text{d}x = \sqrt \pi


Beta函数: B(p,q)C((0,+)×(0,+))\Beta(p,q) \in \mathscr C((0,+\infty)\times(0,+\infty))

B(p,q)=01xp1(1x)q1  dx\Beta(p,q) = \int_0^1 x^{p-1}(1-x)^{q-1} \;\text{d}x

B(p,q)=B(q,p)\Beta(p,q) = \Beta(q,p)

B(p+1,q)=pp+qB(p,q)\Beta(p+1,q) = \frac{p}{p+q}\Beta(p,q)

B(p+1,q+1)=pq(p+q)(p+q+1)B(p,q)\Beta(p+1,q+1) = \frac{pq}{(p+q)(p+q+1)}\Beta(p,q)

B(p,q)=Γ(p)Γ(q)Γ(p+q)=1qCp+q1p1\Beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} = \frac{1}{q C_{p+q-1}^{p-1}}


多重积分

二重积分: DR2D \subseteq R^2, TTDD的一个分割, T=max1in{diam(ΔDi)}\vert T \vert = \max_{1 \le i \le n} \lbrace \text{diam}(\Delta D_i) \rbrace, 其中ΔDi\Delta D_i面积为S(ΔDi)=ΔaiS(\Delta D_i) = \Delta a_i, (xi,yi)ΔDi(x_i,y_i) \in \Delta D_i, 则:

V=limT0i=1nf(xi,yi)Δai=Df(x,y)  dSV = \lim_{\vert T \vert\to 0} \sum_{i=1}^n f(x_i,y_i) \cdot \Delta a_i = \iint_D f(x,y) \;\text{d}S

若该极限值存在且对于不同的TT一致, 则ffDD上可积, fR(D)f \in \mathscr R(D).

D1  da=S(D)\iint_D 1 \;\text{d}a = S(D).
fR(D)f \in \mathscr R(D) \Rightarrow ffDD上有界.
fR(D)f \in \mathscr R(D) \Leftrightarrow 达布上和=达布下和 \Leftrightarrow 振幅刻画limT0i=1nωiΔai\lim_{\vert T \vert\to 0} \sum_{i=1}^n \omega_i \cdot \Delta a_i.
DD为有界闭区域(或间断点集零面积且有界), 则fC(D)f \in \mathscr C(D) \Rightarrow fR(D)f \in \mathscr R(D).

D=i=1mDiD = \bigcup_{i=1}^m D_i, ij,(Di)0(Dj)0=\forall i \ne j, (D_i)_0 \bigcap (D_j)_0 = \varnothing, 则:

Df  dS=i=1mDif  dS\iint_D f \;\text{d}S = \sum_{i=1}^m \iint_{D_i} f \;\text{d}S

fR(D)f \in \mathscr R(D) \Leftrightarrow i,fR(Di)\forall i, f \in \mathscr R(D_i).

fgf \ge g \Rightarrow Df  dSDg  dS\iint_D f \;\text{d}S \ge \iint_D g \;\text{d}S.
Df  dSDf  dS\left\vert \iint_D f \;\text{d}S \right\vert \le \iint_D \vert f \vert \;\text{d}S.

二重积分中值定理: fC(D),gR(D)f \in \mathscr C(D), g \in \mathscr R(D), ggDD上不变号, 则(ξ,η)D\exists (\xi,\eta) \in D s.t.:

Dfg  dS=f(ξ,η)Dg  dS\iint_D fg \;\text{d}S = f(\xi,\eta) \cdot \iint_D g \;\text{d}S

二重积分的计算: 若D={(x,y)x[a,b],y1(x)yy2(x)}D = \lbrace (x,y) \vert x \in [a,b], y_1(x) \le y \le y_2(x) \rbrace, 其中y1,y2C[a,b]y_1,y_2 \in \mathscr C[a,b]y1y2y_1 \le y_2恒成立. 则:

Df  dS=aby1(x)y2(x)f  dy  dx\iint_D f \;\text{d}S = \int_a^b \int_{y_1(x)}^{y_2(x)} f \;\text{d}y \;\text{d}x

D={(x,y)y[a,b],x1(y)xx2(y)}D = \lbrace (x,y) \vert y \in [a,b], x_1(y) \le x \le x_2(y) \rbrace情况类似.
注意若φ(x,y)=(u,v)\varphi(x,y) = (u,v)为连续可微双射, 即(x,y)D,(u,v)(x,y)\forall (x,y) \in D, \frac{\partial (u,v)}{\partial (x,y)}可逆, 则:

  dxdy=det(x,y)(u,v)  dudv=det(u,v)(x,y)1  dudv\;\text{d}x\text{d}y = \left\vert \det \frac{\partial (x,y)}{\partial (u,v)} \right\vert \;\text{d}u\text{d}v = \left\vert \det \frac{\partial (u,v)}{\partial (x,y)} \right\vert^{-1} \;\text{d}u\text{d}v

特别地, 对于极坐标有:

  dxdy=det[cosθρsinθsinθρcosθ]  dρdθ=ρ  dρdθ\;\text{d}x\text{d}y = \left\vert \det \begin{bmatrix} \cos\theta & -\rho\sin\theta \\ \sin\theta & \rho\cos\theta \end{bmatrix} \right\vert \;\text{d}\rho\text{d}\theta = \rho \;\text{d}\rho\text{d}\theta

三维二重积分: 面积微元dS\text{d}S为:

dS=1+(fx)2+(fy)2  dxdy\text{d}S = \sqrt{1+(f'_x)^2 + (f'_y)^2} \;\text{d}x\text{d}y

若曲面单位法向量为n=τ1×τ2τ1×τ2=(cosα,cosβ,cosγ)\vec n = \frac{\vec \tau_1 \times \vec \tau_2}{\| \vec \tau_1 \times \vec \tau_2 \|} = (\cos \alpha, \cos \beta, \cos \gamma), 则也可写作:

dS=1cosγ  dxdy\text{d}S = \frac{1}{\vert \cos\gamma \vert} \;\text{d}x\text{d}y

若切向量具体为τ1=(xu,yu,zu),τ2=(xv,yv,zv)\vec \tau_1 = (x'_u,y'_u,z'_u), \vec \tau_2 = (x'_v,y'_v,z'_v), 则:

n=det[ijkxuyuzuxvyvzv]=(det(y,z)(u,v),det(z,x)(u,v),det(x,y)(u,v))=(A,B,C)dS=A2+B2+C2C  dxdy=A2+B2+C2det(x,y)(u,v)det(x,y)(u,v)  dudv=A2+B2+C2  dudv=τ1×τ2  dudv\begin{aligned} \vec n &= \det \begin{bmatrix} \vec i & \vec j & \vec k \\ x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \\ \end{bmatrix} = \left( \det \frac{\partial (y,z)}{\partial(u,v)}, \det \frac{\partial (z,x)}{\partial(u,v)}, \det \frac{\partial (x,y)}{\partial(u,v)} \right) = (A,B,C) \\ \text{d}S &= \frac{\sqrt{A^2+B^2+C^2}}{\vert C \vert} \;\text{d}x\text{d}y \\ &= \frac{\sqrt{A^2+B^2+C^2}}{\left \vert \det \frac{\partial (x,y)}{\partial(u,v)} \right \vert} \cdot \left \vert \det \frac{\partial (x,y)}{\partial(u,v)} \right \vert\;\text{d}u\text{d}v \\ &= \sqrt{A^2+B^2+C^2} \;\text{d}u\text{d}v \\ &= \| \vec \tau_1 \times \vec \tau_2 \| \;\text{d}u\text{d}v \end{aligned}

Gauss系数:

E=τ12=(xu)2+(yu)2+(zu)2F=τ22=(xv)2+(yv)2+(zv)2G=τ1τ2=xuxv+yuyv+zuzvdS=EFG2  dudv\begin{aligned} E &= \| \vec \tau_1 \|^2 = (x'_u)^2 + (y'_u)^2 + (z'_u)^2 \\ F &= \| \vec \tau_2 \|^2 = (x'_v)^2 + (y'_v)^2 + (z'_v)^2 \\ G &= \vec \tau_1 \cdot \vec \tau_2 = x'_ux'_v + y'_uy'_v + z'_uz'_v \\ \text{d}S &= \sqrt{EF-G^2}\;\text{d}u\text{d}v \\ \end{aligned}


三重积分的计算: 三重积分与二重积分定义类似. 特别地, 三重积分可以转化为"先二后一"或"先一后二"的积分.

Vf(x,y)  dxdydz=Dz1(x,y)z2(x,y)f(x,y)  dz  dxdy\iiint_V f(x,y) \;\text{d}x\text{d}y\text{d}z = \iint_D \int_{z_1(x,y)}^{z_2(x,y)} f(x,y) \;\text{d}z \;\text{d}x\text{d}y

Vf(x,y)  dxdydz=z1z2Dzf(x,y)  dxdy  dz\iiint_V f(x,y) \;\text{d}x\text{d}y\text{d}z = \int_{z_1}^{z_2} \iint_{D_z} f(x,y) \;\text{d}x\text{d}y \;\text{d}z

与二重积分类似有:

  dxdydz=det(x,y,z)(u,v,w)  dudvdw=det(u,v,w)(x,y,z)1  dudvdw\;\text{d}x\text{d}y\text{d}z = \left\vert \det \frac{\partial (x,y,z)}{\partial (u,v,w)} \right\vert \;\text{d}u\text{d}v\text{d}w = \left\vert \det \frac{\partial (u,v,w)}{\partial (x,y,z)} \right\vert^{-1} \;\text{d}u\text{d}v\text{d}w

特别地, 对于柱坐标系有:

  dxdydz=det[cosθρsinθ0sinθρcosθ0001]  dρdθdz=ρ  dρdθdz\;\text{d}x\text{d}y\text{d}z = \left\vert \det \begin{bmatrix} \cos\theta & -\rho\sin\theta & 0 \\ \sin\theta & \rho\cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\vert \;\text{d}\rho\text{d}\theta\text{d}z = \rho \;\text{d}\rho\text{d}\theta\text{d}z

对于球坐标系有(x=ρsinφcosθ,y=ρsinφsinθ,z=ρcosφx = \rho\sin\varphi\cos\theta, y = \rho\sin\varphi\sin\theta, z = \rho\cos\varphi):

  dxdydz=det[sinφcosθρcosφcosθρsinφsinθsinφsinθρcosφsinθρsinφcosθcosφρsinφ0]  dρdφdθ=ρ2sinφ  dρdφdθ\;\text{d}x\text{d}y\text{d}z = \left\vert \det \begin{bmatrix} \sin\varphi\cos\theta & \rho\cos\varphi\cos\theta & -\rho\sin\varphi\sin\theta \\ \sin\varphi\sin\theta & \rho\cos\varphi\sin\theta & \rho\sin\varphi\cos\theta \\ \cos\varphi & -\rho\sin\varphi & 0 \end{bmatrix} \right\vert \;\text{d}\rho\text{d}\varphi\text{d}\theta = \rho^2 \sin \varphi \;\text{d}\rho\text{d}\varphi\text{d}\theta


物理量计算:
质量:

M=Vρ(x,y,z)  dxdydzM = \iiint_V \rho(x,y,z) \;\text{d}x\text{d}y\text{d}z

质心(静力矩/M/M):

{x~=1MVxρ(x,y,z)  dxdydzy~=1MVyρ(x,y,z)  dxdydzz~=1MVzρ(x,y,z)  dxdydz\left\lbrace \begin{aligned} \widetilde x &= \frac{1}{M}\iiint_V x\rho(x,y,z) \;\text{d}x\text{d}y\text{d}z \\ \widetilde y &= \frac{1}{M}\iiint_V y\rho(x,y,z) \;\text{d}x\text{d}y\text{d}z \\ \widetilde z &= \frac{1}{M}\iiint_V z\rho(x,y,z) \;\text{d}x\text{d}y\text{d}z \\ \end{aligned} \right.

转动惯量:

I=Vρ(x,y,z)r2(x,y,z)  dxdydzI = \iiint_V \rho(x,y,z) \cdot r^2(x,y,z) \;\text{d}x\text{d}y\text{d}z

引力:

{Fx=Gm0V(xx0)ρ(x,y,z)r3  dxdydzFy=Gm0V(yy0)ρ(x,y,z)r3  dxdydzFz=Gm0V(zz0)ρ(x,y,z)r3  dxdydz\left\lbrace \begin{aligned} F_x &= Gm_0\iiint_V \frac{(x-x_0)\rho(x,y,z)}{r^3} \;\text{d}x\text{d}y\text{d}z \\ F_y &= Gm_0\iiint_V \frac{(y-y_0)\rho(x,y,z)}{r^3} \;\text{d}x\text{d}y\text{d}z \\ F_z &= Gm_0\iiint_V \frac{(z-z_0)\rho(x,y,z)}{r^3} \;\text{d}x\text{d}y\text{d}z \\ \end{aligned} \right.


曲线积分

第I型曲线积分:

Lf(x,y,z)  d\int_L f(x,y,z) \;\text{d}\ell

其中:

  d=(xt)2+(yt)2+(zt)2  dt\;\text{d}\ell = \sqrt{(x'_t)^2 + (y'_t)^2 + (z'_t)^2}\;\text{d}t

特别地, 对于封闭曲线记为:

Lf(x,y,z)  d\oint_L f(x,y,z) \;\text{d}\ell

第I型曲线积分不具有方向性:

ABf(x,y,z)  d=BAf(x,y,z)  d\int_{\overgroup{AB}} f(x,y,z) \;\text{d}\ell = \int_{\overgroup{BA}} f(x,y,z) \;\text{d}\ell

fgf \ge g \Rightarrow Lf  dLg  d\int_L f \;\text{d}\ell \ge \iint_L g \;\text{d}\ell.
Lf  dLf  d\left\vert \int_L f \;\text{d}\ell \right\vert \le \iint_L \vert f \vert \;\text{d}\ell.

第I型曲线积分中值定理: fC(L)f \in \mathscr C(L), (ξ,η,ζ)L\exists (\xi,\eta,\zeta) \in L s.t.:

Lf(x,y,z)  d=f(ξ,η,ζ)\iint_L f(x,y,z) \;\text{d}\ell = f(\xi,\eta,\zeta) \cdot \ell


第II型曲线积分: F(x,y,z)=(X(x,y,z),Y(x,y,z),Z(x,y,z))\vec F(x,y,z) = (X(x,y,z),Y(x,y,z),Z(x,y,z)), r=τd=(dx,dy,dz)\vec r = \vec \tau \text{d}\ell = (\text{d}x,\text{d}y,\text{d}z), 有时r\vec r也写做\vec \ell.

LFdr=LFτd=LXdx+Ydy+Zdz\begin{aligned} \int_L \vec F \cdot \text{d}\vec r &= \int_L \vec F \cdot \vec \tau \text{d}\ell = \int_L X\text{d}x + Y\text{d}y + Z\text{d}z \\ \end{aligned}

注意LXdx+Ydy+Zdz=LX  dx+LY  dy+LZ  dz\int_L X\text{d}x + Y\text{d}y + Z\text{d}z = \int_L X\;\text{d}x + \int_L Y \;\text{d}y + \int_L Z \;\text{d}z, 其中的曲线积分L\int_L不能直接等价于一重积分\int, 因为另一变量在改变而非常数. Lf(x,y)  dx\int_L f(x,y) \;\text{d}x这种曲线积分在封闭情况下可以求解, 参见下方"Green公式"与"Stokes公式"(另外, 如果被积函数和另一变量无关也可以求解).

对于闭区域DD的边界曲线D=L\partial D = L, 一般将其正方向定义为DD内部在LL左侧, 记为L+L^+. 默认封闭曲线积分为沿正方向的积分.

LL为多条有向曲线段LiL_i首尾相接而成, 则:

LFτ  d=i=1mLiFτ  d\iint_L \vec F \cdot \vec \tau \;\text{d}\ell = \sum_{i=1}^m \iint_{L_i} \vec F \cdot \vec \tau \;\text{d}\ell

FτR(L)\vec F \cdot \vec \tau \in \mathscr R(L) \Leftrightarrow i,FτR(Li)\forall i, \vec F \cdot \vec \tau \in \mathscr R(L_i).

第II型曲线积分具有方向性:

ABF(x,y,z)dr=BAF(x,y,z)dr\int_{\overgroup{AB}} \vec F(x,y,z) \cdot \text{d}\vec r = -\int_{\overgroup{BA}} \vec F(x,y,z) \cdot \text{d}\vec r

事实上, Fτ  d\int F \cdot \vec \tau \;\text{d}\ell也可看做是第I型曲线积分不具有方向性, 但F(τ)=Fr\vec F \cdot (-\vec \tau) = - \vec F \cdot \vec r, 故第II型曲线积分具有方向性.

Green公式:
DR2D \subseteq \mathbb R^2, P,QC(1)(D)P,Q \in \mathscr C^{(1)}(D), D=L\partial D = L光滑或分段光滑, 则:

L+Pdx+Qdy=D(QxPy)  dxdy=Ddet[xyPQ]  dxdy\oint_{L^+} P\text{d}x + Q\text{d}y = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \;\text{d}x\text{d}y = \iint_D \det \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \\ \end{bmatrix} \;\text{d}x\text{d}y

更进一步, 事实上有:

L+Pdx=DPy  dxdyL+Qdy=DQx  dxdy\begin{aligned} \oint_{L^+} P\text{d}x &= - \iint_D \frac{\partial P}{\partial y}\;\text{d}x\text{d}y \\ \oint_{L^+} Q\text{d}y &= \iint_D \frac{\partial Q}{\partial x}\;\text{d}x\text{d}y \\ \end{aligned}

注意到如果构造P,QP,Q使得QxPy=C\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = C为非零常数, 则可用于求出DD区域的面积. 例如:

S(D)=12D+xdyydxS(D) = \frac{1}{2}\oint_{\partial D^+} x\text{d}y-y\text{d}x

另外, 分别考虑曲线在平面内的切向量和τ\vec \tau和朝向区域外侧的单位法向量n\vec n, Green公式也可写作:

L+(P,Q)τd=D(QxPy)  dxdyL+(P,Q)nd=D(Px+Qy)  dxdy\begin{aligned} \oint_{L^+} (P,Q) \cdot \vec \tau\text{d}\ell &= \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \;\text{d}x\text{d}y \\ \oint_{L^+} (P,Q) \cdot \vec n\text{d}\ell &= \iint_D \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \;\text{d}x\text{d}y \\ \end{aligned}


路径无关积分:
DR2D \subseteq \mathbb R^2, P,QC(1)(D)P,Q \in \mathscr C^{(1)}(D), LL光滑或分段光滑, 则以下命题等价:

  1. L(A,B)Pdx+Qdy\int_{L(A,B)} P\text{d}x+Q\text{d}y路径无关.
  2. U\exists U s.t.: (x,y)D,dU=Pdx+Qdy\forall (x,y) \in D, \text{d}U = P\text{d}x + Q\text{d}y. 即:

    U(x,y)=(x0,y0)(x,y)Pdx+QdyU(x,y) = \int_{(x_0,y_0)}^{(x,y)} P\text{d}x + Q\text{d}y

  3. (x,y)D\forall (x,y) \in D, Py=Qx=2Uxy\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{\partial^2 U}{\partial x \partial y}.
  4. LD\forall L \subseteq D, 若LL为光滑或分段光滑封闭曲线, 则LPdx+Qdy=0\oint_L P\text{d}x + Q\text{d}y = 0.

全微分方程: 若U,dU(x,y)=Pdx+Qdy\exists U, \text{d}U(x,y) = P\text{d}x+Q\text{d}y, 则方程Pdx+Qdy=0P\text{d}x+Q\text{d}y = 0为全微分方程. 由上述路径无关积分结论可得:

  1. Pdx+Qdy=0P\text{d}x+Q\text{d}y = 0是全微分方程 \Leftrightarrow Py=Qx\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.
  2. P=Ux,Q=UyP = \frac{\partial U}{\partial x}, Q = \frac{\partial U}{\partial y}.
  3. 全微分方程的通解为U(x,y)=CU(x,y) = C.

求全微分方程的通解函数UU的方法:

  1. 任选一条路径LL进行曲线积分.
  2. 定义Ux(x,y)=P  dxU_x(x,y) = \int P\;\text{d}x, 则Uxx=P\frac{\partial U_x}{\partial x} = P. 若U(x,y)=Ux(x,y)+Uy(y)U(x,y) = U_x(x,y) + U_y(y), 则Q=Uy=Uxy+dUydyQ = \frac{\partial U}{\partial y} = \frac{\partial U_x}{\partial y} + \frac{\text{d} U_y}{\text{d} y}, 即Uy=QUxy  dyU_y = \int Q - \frac{\partial U_x}{\partial y} \;\text{d}y. 即:

    U=P  dx+Q(P  dx)y  dy+CU = \int P\;\text{d}x + \int Q - \frac{\partial\left(\int P\;\text{d}x\right)}{\partial y} \;\text{d}y + C

  3. 直接凑微分Pdx+Qdy=dUP\text{d}x + Q\text{d}y = \text{d}U.

常见全微分形式:

ydx+xdy=d(xy)y\text{d}x + x\text{d}y = \text{d}(xy)

ydxxdyy2=d(xy)\frac{y\text{d}x - x\text{d}y}{y^2} = \text{d}\left(\frac{x}{y}\right)

ydxxdyxy=d(lnxy)\frac{y\text{d}x - x\text{d}y}{xy} = \text{d}\left(\ln \left\vert \frac{x}{y} \right\vert \right)

ydxxdyx2+y2=d(arctanxy)\frac{y\text{d}x - x\text{d}y}{x^2+y^2} = \text{d}\left(\arctan \frac{x}{y} \right)

xdx+ydyx2+y2=d(12ln(x2+y2))\frac{x\text{d}x + y\text{d}y}{x^2+y^2} = \text{d}\left(\frac{1}{2}\ln(x^2+y^2) \right)

ydxxdyx2y2=d(12lnxyx+y)\frac{y\text{d}x - x\text{d}y}{x^2-y^2} = \text{d}\left(\frac{1}{2}\ln\left\vert \frac{x-y}{x+y} \right\vert \right)

积分因子: 若Pdx+Qdy=0P\text{d}x + Q\text{d}y = 0不是全微分方程, 但μPdx+μQdy=0\mu P\text{d}x + \mu Q\text{d}y = 0是全微分方程(即(μP)y=(μQ)x\frac{\partial(\mu \cdot P)}{\partial y} = \frac{\partial(\mu \cdot Q)}{\partial x}, 也即μyP+μPy=μxQ+μQx\mu'_yP + \mu P'_y = \mu'_xQ + \mu Q'_x), 则μ(x,y)\mu(x,y)Pdx+Qdy=0P\text{d}x + Q\text{d}y = 0的积分因子.

μ(x,y)=μ(x)\mu(x,y) = \mu(x)(即μy=0\mu'_y = 0), 则:

μx=PyQxQμμ=exp(PyQxQ  dx)\mu'_x = \frac{P'_y - Q'_x}{Q}\mu \Rightarrow \mu = \exp\left(\int \frac{P'_y - Q'_x}{Q} \;\text{d}x \right)

μ(x,y)=μ(y)\mu(x,y) = \mu(y)(即μx=0\mu'_x = 0), 则:

μy=PyQxPμμ=exp(PyQxP  dy)\mu'_y = \frac{P'_y - Q'_x}{-P}\mu \Rightarrow \mu = \exp\left(\int \frac{P'_y - Q'_x}{-P} \;\text{d}y \right)

若求出积分因子, 则全微分方程μPdx+μQdy=0\mu P\text{d}x + \mu Q\text{d}y = 0通解为U(x,y)=CU(x,y) = C也就是原方程的通解.


曲面积分

第I型曲面积分:

Σf(x,y,z)  dS\iint_\Sigma f(x,y,z) \;\text{d}S

其中(与三维二重积分类似):

dS=1+(fx)2+(fy)2  dxdydS=1cosγ  dxdydS=A2+B2+C2C  dxdydS=A2+B2+C2  dudvdS=τ1×τ2  dudvdS=EFG2  dudv\begin{aligned} \text{d}S &= \sqrt{1+(f'_x)^2 + (f'_y)^2} \;\text{d}x\text{d}y \\ \text{d}S &= \frac{1}{\vert \cos\gamma \vert} \;\text{d}x\text{d}y \\ \text{d}S &= \frac{\sqrt{A^2+B^2+C^2}}{\vert C \vert} \;\text{d}x\text{d}y \\ \text{d}S &= \sqrt{A^2+B^2+C^2} \;\text{d}u\text{d}v \\ \text{d}S &= \| \vec \tau_1 \times \vec \tau_2 \| \;\text{d}u\text{d}v \\ \text{d}S &= \sqrt{EF-G^2}\;\text{d}u\text{d}v \\ \end{aligned}

事实上, 由行列式的物理意义即可得到, 对于任意τu\vec \tau_uτv\vec \tau_v确定的dS\text{d}S, 以及τp\vec \tau_pτq\vec \tau_q确定的dS\text{d}S', 都有:

dS=det(u,v)(p,q)  dS\text{d}S = \left\vert \det \frac{\partial (u,v)}{\partial (p,q)} \right\vert \;\text{d}S'

特别地, 对于封闭曲线记为:

Σf(x,y,z)  dS\oiint_\Sigma f(x,y,z) \;\text{d}S

第I型曲面积分中值定理: fC(Σ)f \in \mathscr C(\Sigma), Σ\Sigma光滑, (ξ,η,ζ)Σ\exists (\xi,\eta,\zeta) \in \Sigma s.t.:

Σf(x,y,z)  dS=f(ξ,η,ζ)S(Σ)\iint_\Sigma f(x,y,z)\;\text{d}S = f(\xi,\eta,\zeta) \cdot S(\Sigma)

Poisson公式:

x2+y2+z2=1f(ax+by+cz)  dS=2π11f(ua2+b2+c2)  dux2+y2+z2=r2f(ax+by+cz)  dS=2πrrrf(ua2+b2+c2)  du\begin{aligned} \iint_{x^2+y^2+z^2=1} f(ax+by+cz)\;\text{d}S &= 2\pi\int_{-1}^1 f\left(u\sqrt{a^2+b^2+c^2}\right)\;\text{d}u \\ \iint_{x^2+y^2+z^2=r^2} f(ax+by+cz)\;\text{d}S &= 2\pi r\int_{-r}^r f\left(u\sqrt{a^2+b^2+c^2}\right)\;\text{d}u \\ \end{aligned}


双侧曲面: 曲面SS上任意一点p0p_0处存在两个共线反向法向量, 选定其中一个为正方向, 当动点ppp0p_0出发沿SS上任意封闭曲线回到p0p_0时, 法向量正方向与出发时正方向相同, 则SS为双侧曲面. (单侧曲面例如莫比乌斯环). 规定方向的双侧曲面为有向曲面.

第II型曲面积分:F(x,y,z)=(X(x,y,z),Y(x,y,z),Z(x,y,z))\vec F(x,y,z) = (X(x,y,z),Y(x,y,z),Z(x,y,z)), S=ndS=(cosα,cosβ,cosγ)dS=(dydz,dzdx,dxdy)\vec S = \vec n \text{d}S = (\cos\alpha,\cos\beta,\cos\gamma)\text{d}S = (\text{d}y \wedge \text{d}z, \text{d}z \wedge \text{d}x, \text{d}x \wedge \text{d}y), 其中n\vec n是有向曲面正方向一侧的单位法向量:

Σ+FdS=Σ+FndS=Σ+Xdydz+Ydzdx+Zdxdy\begin{aligned} \iint_{\Sigma^+} \vec F \cdot \text{d}\vec S &= \iint_{\Sigma^+} \vec F \cdot \vec n \text{d}S = \iint_{\Sigma^+} X \text{d}y \wedge \text{d}z + Y \text{d}z \wedge \text{d}x + Z \text{d}x \wedge \text{d}y \\ \end{aligned}

其中: dydz=cosα  dS=AA2+B2+C2  dS=AA2+B2+C2×A2+B2+C2A  dydz=sgn(A)  dydz\text{d}y\wedge\text{d}z = \cos\alpha\;\text{d}S = \frac{A}{\sqrt{A^2+B^2+C^2}}\;\text{d}S = \frac{A}{\sqrt{A^2+B^2+C^2}} \times \frac{\sqrt{A^2+B^2+C^2}}{\vert A \vert}\;\text{d}y\text{d}z = \text{sgn}(A)\;\text{d}y\text{d}z. 另外两项同理.

注意Σ+Xdydz+Ydzdx+Zdxdy=Σ+Xdydz+Σ+Ydzdx+Σ+Zdxdy\iint_{\Sigma^+} X \text{d}y \wedge \text{d}z + Y \text{d}z \wedge \text{d}x + Z \text{d}x \wedge \text{d}y = \iint_{\Sigma^+} X \text{d}y \wedge \text{d}z + \iint_{\Sigma^+} Y \text{d}z \wedge \text{d}x + \iint_{\Sigma^+} Z \text{d}x \wedge \text{d}y, 其中的曲面积分Σ+\iint_{\Sigma^+}不能直接等价于二重积分\iint, 因为第三变量在改变而非常数. 不同于曲线积分, Σ+f(x,y,z)  dydz\iint_{\Sigma^+} f(x,y,z) \;\text{d}y\wedge\text{d}z这种曲面积分在封闭情况下可以求解, 参见下方"Gauss公式"(另外, 类似于曲线积分如果被积函数和第三变量无关也可以求解).

对于闭区域VV的边界曲线V=Σ\partial V = \Sigma, 一般将其正方向定义为Σ\Sigma的外侧, 记为Σ+\Sigma^+. 默认封闭曲线积分为沿正方向的积分.

第II型曲面积分具有方向性:

Σ+F(x,y,z)dS=ΣF(x,y,z)dS\iint_{\Sigma^+} \vec F(x,y,z) \cdot \text{d}\vec S = -\iint_{\Sigma^-} \vec F(x,y,z) \cdot \text{d}\vec S

事实上, Fn  dS\int F \cdot \vec n \;\text{d}S也可看做是第I型曲面积分不具有方向性, 但F(n)=Fn\vec F \cdot (-\vec n) = - \vec F \cdot \vec n, 故第II型曲面积分具有方向性.

Σ+FdS=±DXA+YB+ZC  dudv\iint_{\Sigma^+} \vec F \cdot \text{d}\vec S = \pm \iint_D XA + YB + ZC \;\text{d}u\text{d}v

其中:

A=det(y,z)(u,v),B=det(z,x)(u,v),C=det(x,y)(u,v)A = \det \frac{\partial (y,z)}{\partial(u,v)}, B = \det \frac{\partial (z,x)}{\partial(u,v)}, C = \det \frac{\partial (x,y)}{\partial(u,v)}

Gauss公式:
VR3V \subseteq \mathbb R^3, P,Q,RC(1)(V)P,Q,R \in \mathscr C^{(1)}(V), V=Σ\partial V = \Sigma光滑或分片光滑, 则:

Σ+Pdydz+Qdzdx+Rdxdy=VPx+Qy+Rz  dxdydz\oiint_{\Sigma^+} P \text{d}y \wedge \text{d}z + Q \text{d}z \wedge \text{d}x + R \text{d}x \wedge \text{d}y = \iiint_V \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} \;\text{d}x\text{d}y\text{d}z

更进一步, 事实上有:

Σ+Pdydz=VPx  dVΣ+Qdzdx=VQy  dVΣ+Rdxdy=VRz  dV\begin{aligned} \oiint_{\Sigma^+} P\text{d}y\wedge\text{d}z &= \iiint_V \frac{\partial P}{\partial x}\;\text{d}V \\ \oiint_{\Sigma^+} Q\text{d}z\wedge\text{d}x &= \iiint_V \frac{\partial Q}{\partial y}\;\text{d}V \\ \oiint_{\Sigma^+} R\text{d}x\wedge\text{d}y &= \iiint_V \frac{\partial R}{\partial z}\;\text{d}V \\ \end{aligned}

注意到如果构造P,Q,RP,Q,R使得Px+Qy+Rz=C\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} = C为非零常数, 则可用于求出VV区域的体积.

Stokes公式:
SS为光滑双侧曲面, P,Q,RC(1)(S)P,Q,R \in \mathscr C^{(1)}(S), S=L\partial S = L光滑或分段光滑, 则:

L+Pdx+Qdy+Rdz=S+(RyQz)dydz+(PzRx)dzdx+(QxPy)dxdy=S+det[dydzdzdxdxdyxyzPQR]=S+det[cosαcosβcosγxyzPQR]  dS\begin{aligned} \oint_{L^+} P\text{d}x + Q\text{d}y + R\text{d}z = \iint_{S^+} &\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \text{d}y\wedge\text{d}z \\ +& \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \text{d}z\wedge\text{d}x \\ +& \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \text{d}x\wedge\text{d}y \\ =\iint_{S^+} &\det \begin{bmatrix} \text{d}y\wedge\text{d}z & \text{d}z\wedge\text{d}x & \text{d}x\wedge\text{d}y \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \\ \end{bmatrix} \\ =\iint_{S^+} &\det \begin{bmatrix} \cos\alpha & \cos\beta & \cos\gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \\ \end{bmatrix} \;\text{d}S \end{aligned}

其中L+L^+S+S^+方向满足右手法则(大拇指指向S+S^+正法向量方向, 四指为L+L^+正方向).

更进一步, 事实上有:

L+Pdx=S+PzdzdxPydxdyL+Qdy=S+QxdxdyQzdydzL+Rdz=S+RydydzRxdzdx\begin{aligned} \oint_{L^+} P\text{d}x &= \iint_{S^+} \frac{\partial P}{\partial z}\text{d}z\wedge\text{d}x - \frac{\partial P}{\partial y}\text{d}x\wedge\text{d}y \\ \oint_{L^+} Q\text{d}y &= \iint_{S^+} \frac{\partial Q}{\partial x}\text{d}x\wedge\text{d}y - \frac{\partial Q}{\partial z}\text{d}y\wedge\text{d}z \\ \oint_{L^+} R\text{d}z &= \iint_{S^+} \frac{\partial R}{\partial y}\text{d}y\wedge\text{d}z - \frac{\partial R}{\partial x}\text{d}z\wedge\text{d}x \\ \end{aligned}

特别地, 在二维特殊情况下有:

L+Pdx=S+PydxdyL+Qdy=S+Qxdxdy\begin{aligned} \oint_{L^+} P\text{d}x &= - \iint_{S^+} \frac{\partial P}{\partial y}\text{d}x\wedge\text{d}y \\ \oint_{L^+} Q\text{d}y &= \iint_{S^+} \frac{\partial Q}{\partial x}\text{d}x\wedge\text{d}y \\ \end{aligned}

与Green公式相吻合.


空间路径无关积分:
ΩR3\Omega \subseteq \mathbb R^3中任意一条简单封闭区县LL可以通过连续形变收缩为一点, 则称LL零伦的. LL为零伦的当且仅当LL为某分片光滑曲面SΩS \subseteq \Omega的边界曲线.
若区域Ω\Omega内任意简单闭曲线都为零伦的,则Ω\Omega单连通体.
ΩR3\Omega \subseteq \mathbb R^3为单连通体, P,QC(1)(Ω)P,Q \in \mathscr C^{(1)}(\Omega), LL光滑或分段光滑, 则以下命题等价:

  1. L(A,B)Pdx+Qdy+Rdz\int_{L(A,B)} P\text{d}x+Q\text{d}y+R\text{d}z路径无关.
  2. U\exists U s.t.: (x,y,z)Ω,dU=Pdx+Qdy+Rdz\forall (x,y,z) \in \Omega, \text{d}U = P\text{d}x + Q\text{d}y + R\text{d}z. 即:

    U(x,y)=(x0,y0)(x,y)Pdx+Qdy+RdzU(x,y) = \int_{(x_0,y_0)}^{(x,y)} P\text{d}x + Q\text{d}y + R\text{d}z

  3. (x,y,z)Ω,Ry=Qz\forall (x,y,z) \in \Omega, \frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}, Pz=Rx\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, Qx=Py\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.
  4. LD\forall L \subseteq D, 若LL为光滑或分段光滑封闭曲线, 则LPdx+Qdy+Rdz=0\oint_L P\text{d}x + Q\text{d}y + R\text{d}z = 0.

场论

: ΩR3\Omega \subseteq \mathbb R^3, MΩ\forall M \in \Omega: 若!u=f(M)\exists! u = f(M), 则ffΩ\Omega上的数量场; 若u=F(M)\exists \vec u = \vec F(M), 则F\vec FΩ\Omega上的向量场.

梯度场: 若数量场UUΩ\Omega上连续可微, 则U(M)=(Ux(M),Uy(M),Uz(M))\nabla U(M) = (U'_x(M),U'_y(M),U'_z(M))Ω\Omega上的向量场, 即为uu的梯度场. \nabla又称哈密顿算子:

=(x,y,z)\nabla = \left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)

注意UU为数量场而U\nabla U为向量场, 不能写作U\nabla \cdot U, 后者中UU为向量场而U\nabla \cdot U为数量场(散度场).

任意连续可导数量场存在对应向量场(梯度场), 但并非所有连续向量场存在对应数量场, 其存在的充要条件是势函数存在(积分路径无关).

保守场: 若向量场F\vec FΩ\Omega上积分路径无关, 即L(A,B)Fτ=U(B)U(A)\int_{L(A,B)} \vec F \cdot \vec \tau = U(B)-U(A), 则F\vec FΩ\Omega上的保守场.

有势场: 若向量场F\vec FΩ\Omega上存在可微函数UU, 使得F=U\vec F = \nabla U, 则F\vec FΩ\Omega上的有势场.

F\vec F为有势场 \Leftrightarrow F\vec F为保守场.


散度场: 若向量场F(M)=(P(M),Q(M),R(M))\vec F(M) = (P(M),Q(M),R(M))Ω\Omega上连续可微, 则:

divF=Px+Qy+Rz=F\text{div} \vec F = P'_x+Q'_y+R'_z = \nabla \cdot \vec F

Ω\Omega上的数量场, 即F\vec F的散度场.

通量/流量: S+S^+为连续可微向量场F\vec F中的定向曲面, n\vec nS+S^+单位法向量, 则F\vec F通过曲面SSn\vec n方向的通量/流量为:

S+FndS\iint_{S^+} \vec F \cdot \vec n \text{d}S

注意到根据Gauss公式, F\vec FΩ\Omega上连续可微, 故:

Ω+Fn  dS=ΩdivF  dV\oiint_{\partial\Omega^+} \vec F \cdot \vec n \;\text{d}S = \iiint_\Omega \text{div}\vec F \;\text{d}V

且根据积分中值定理, ξΩ\exists \xi \in \Omega:

Ω+Fn  dS=ΩdivF  dV=divF(ξ)V(Ω)\oiint_{\partial\Omega^+} \vec F \cdot \vec n \;\text{d}S = \iiint_\Omega \text{div}\vec F \;\text{d}V = \text{div}\vec F(\xi) \cdot V(\Omega)

故散度场可以定义为, 对于以MM为球心的球DD:

divF(M)=limV(D)01V(D)D+Fn  dS\text{div}\vec F(M) = \lim_{V(D)\to0}\frac{1}{V(D)}\oiint_{\partial D^+} \vec F \cdot \vec n\;\text{d}S

无源场: 若divF(M)0\text{div}\vec F(M) \ne 0, 称F\vec FMM有流源; 若divF(M)>0\text{div}\vec F(M) \gt 0, 称F\vec FMM有正流源; 若divF(M)<0\text{div}\vec F(M) \lt 0, 称F\vec FMM有负流源. 若MΩ\forall M \in \Omega, divF(M)=0\text{div}\vec F(M) = 0, 则F\vec FΩ\Omega上的无源场.


旋度场: 若向量场F(M)=(P(M),Q(M),R(M))\vec F(M) = (P(M),Q(M),R(M))Ω\Omega上连续可微, 则:

rotF=(PyQz,PzRx,QxPy)=det[ijkxyzPQR]=×F\text{rot}\vec F = \left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x},\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) = \det\begin{bmatrix}\vec i & \vec j & \vec k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \\ \end{bmatrix} = \nabla \times \vec F

Ω\Omega上的向量场, 即为F\vec F的旋度场.

环量/环流量: L+L^+为向量场F\vec F中光滑或分段光滑的有向闭合曲线, τ\vec \tauL+L^+单位切向量, 则F\vec F沿L+L^+的环量/环流量为:

L+Fτd\oint_{L^+} \vec F \cdot \vec \tau \text{d}\ell

注意到根据Stokes公式:

L+Fτd=Σ+rotFn  dΣ\oint_{L^+} \vec F \cdot \vec \tau \text{d}\ell = \iint_{\Sigma^+} \text{rot}\vec F \cdot \vec n\;\text{d}\Sigma

且根据积分中值定理, ξΣ+\exists \xi \in \Sigma^+:

L+Fτd=Σ+rotFn  dS=rotF(ξ)nS(Σ)\oint_{L^+} \vec F \cdot \vec \tau \text{d}\ell = \iint_{\Sigma^+} \text{rot}\vec F \cdot \vec n\;\text{d}S = \text{rot}\vec F(\xi) \cdot \vec n \cdot S(\Sigma)

故旋度场可以定义为, 对于以MM为圆心的圆DD:

rotF(M)n=limS(D)01S(D)D+Fτ  d\text{rot}\vec F(M) \cdot \vec n = \lim_{S(D)\to0}\frac{1}{S(D)}\oint_{\partial D^+} \vec F \cdot \vec \tau\;\text{d}\ell

无旋场: 故rotF(M)n\text{rot}\vec F(M) \cdot \vec n表示F\vec FMM处环绕n\vec n方向旋量, 则rotF(M)\text{rot}\vec F(M)的三个方向分量分别表示F\vec FMM处环绕x,y,zx,y,z三个坐标的方向旋量. 若rotF(M)0\| \text{rot}\vec F(M) \| \ne 0, 则MMF\vec F旋涡, rotF(M)\| \text{rot}\vec F(M) \|越大旋转越快. 若MΩ\forall M \in \Omega, rotF(M)=0\| \text{rot}\vec F(M) \| = 0, 则F\vec FΩ\Omega上的无旋场.


调和场: 若向量场F\vec FΩ\Omega上同时为有势场和无源场, 则F\vec FΩ\Omega上的调和场.
F\vec FΩ\Omega上同时为有势场和无源场, 故:

0=divF=F=(U)=()U=ΔU0 = \text{div}\vec F = \nabla \cdot \vec F = \nabla \cdot (\nabla U) = (\nabla \cdot \nabla) U = \Delta U

其中Δ\Delta拉普拉斯算子:

Δ=2=2x2+2y2+2z2\Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}

注意若UU为数量场则ΔU\Delta U也为数量场, 若UU为向量场则ΔU\Delta U也为向量场, 不能写作ΔU\Delta \cdot U, 后者无意义.

拉普拉斯方程: ΔU=0\Delta U = 0为拉普拉斯方程, 满足次方程的解函数UU称为调和函数.


场的联合运算: 若数量场UUΩ\Omega上二阶连续可微, 向量场F\vec FΩ\Omega上二阶连续可微, 则:

div(rotF)=(×F)=F(×)=0=0(1)\text{div}(\text{rot}\vec F) = \nabla \cdot (\nabla \times \vec F) = \vec F \cdot \underbrace{(\nabla \times \nabla)}_{=\vec 0} = 0 \tag{1}

rot(U)=×(U)=(×)=0U=0(2)\text{rot}(\nabla U) = \nabla \times (\nabla U) = \underbrace{(\nabla \times \nabla)}_{=\vec 0} U = \vec 0 \tag{2}

div(U)=(U)=()U=ΔU(3)\text{div}(\nabla U) = \nabla \cdot (\nabla U) = (\nabla \cdot \nabla) U = \Delta U \tag{3}

(divF)rot(rotF)=(F)×(×F)a×(b×c)=(ac)b(ab)c=(F)((F)()F)=()F=ΔF(4)\begin{aligned} \nabla(\text{div}\vec F) - \text{rot}(\text{rot}\vec F) &= (\nabla \cdot \vec F)\nabla - \underbrace{\nabla \times (\nabla \times \vec F)}_{\vec a \times (\vec b \times \vec c) = (\vec a \cdot \vec c)\vec b - (\vec a \cdot \vec b)\vec c} \\ &= (\nabla \cdot \vec F)\nabla - \Big( (\nabla \cdot \vec F)\nabla - (\nabla \cdot \nabla) \vec F \Big) \\ &= (\nabla \cdot \nabla) \vec F \\ &= \Delta \vec F \\ \end{aligned} \tag{4}

由(1)., 旋度场均为无源场.
由(2)., 梯度场均为无旋场.
由(2)., F\vec F为有势场/保守场 \Leftrightarrow F\vec F为无旋场, 即rotF=0\| \text{rot}\vec F \| = 0.


平面通量: L+L^+为连续可微向量场F\vec F中的定向曲线, n\vec nL+L^+在平面内的单位法向量, 则F\vec F穿过曲线LL的通量为:

L+Fn  d\int_{L^+} \vec F \cdot \vec n \;\text{d}\ell

平面环量: 与空间环量一致.

平面散度与旋度:

D+Fn  d=DdivF  dxdy\oint_{\partial D^+} \vec F \cdot \vec n \;\text{d}\ell = \iint_D \text{div}\vec F\;\text{d}x\text{d}y

D+Fτ  d=DrotF  dxdy\oint_{\partial D^+} \vec F \cdot \vec \tau \;\text{d}\ell = \iint_D \text{rot}\vec F\;\text{d}x\text{d}y


级数

级数: 无穷项数列求和:

S=u1+u2+u3++un+=n=1unS = u_1+u_2+u_3+\cdots+u_n+\cdots = \sum_{n=1}^{\infty} u_n

其中unu_n通项/一般项, 若i,ui\forall i, u_i不含有参数变量, 则该级数为**(常数项)级数**. 正项级数、负项级数、交错级数、任意项级数等都为常数项级数的特殊情况.

部分和: 级数的前nn项部分和为:

Sn=u1+u2+u3++un=i=1nuiS_n = u_1+u_2+u_3+\cdots+u_n = \sum_{i=1}^n u_i

级数收敛当且仅当部分和数列收敛, 且此时两者相等.

S=n=1un=limnSnS = \sum_{n=1}^{\infty} u_n = \lim_{n\to\infty} S_n

级数收敛柯西原理: 又数列收敛柯西原理和级数收敛的部分和等价条件可得, 级数收敛当且仅当: ε>0,N>0,n>N,p>0\forall \varepsilon \gt 0, \exists N \gt 0, \forall n \gt N, p \gt 0, 都有:

un+1++un+p<ε\vert u_{n+1}+\cdots+u_{n+p} \vert \lt \varepsilon

SS收敛 \Rightarrow 通项unu_n收敛至00.
改变SS的有限项不影响SS的敛散性(但收敛时会影响级数值, 这与数列极限不同).

余合: rn=SSnr_n = S-S_n为级数SS的第nn项余和.

级数收敛当且仅当余和收敛至00.

S=limnrn=limnSSn=SlimnSn=0S=\lim_{n\to\infty} r_n = \lim_{n\to\infty} S-S_n = S-\lim_{n\to\infty}S_n = 0


收敛级数的运算: 若级数n=1un\sum_{n=1}^{\infty} u_n收敛到AA, 级数n=1vn\sum_{n=1}^{\infty} v_n收敛到BB, α,βR\forall \alpha,\beta \in \mathbb R, 0=n0<n1<n2<0 = n_0 \lt n_1 \lt n_2 \lt \cdots, 则:

n=1(αun+βvn)=αA+βBk=1(unk1+1++unk)=A\begin{aligned} \sum_{n=1}^{\infty}(\alpha u_n + \beta v_n) &= \alpha A + \beta B \\ \sum_{k=1}^{\infty}(u_{n_{k-1}+1}+\cdots+u_{n_k}) &= A \end{aligned}

注意新级数k=1(unk1+1++unk)\sum_{k=1}^{\infty}(u_{n_{k-1}+1}+\cdots+u_{n_k})收敛不保证原级数收敛(e.g.: 1,11,-1交错数列). 若收敛的新级数中每一项内符号相同,则原级数收敛.


同号级数: n1,un0\forall n \ge 1, u_n \ge 0, 则n=1un\sum_{n=1}^\infty u_n正项级数. n1,un0\forall n \ge 1, u_n \le 0, 则n=1un\sum_{n=1}^\infty u_n负项级数. 不失一般性, 通常仅考虑正项级数即可.

正项级数的级数部分和数列SnS_n单调递增, 故正项级数收敛当且仅当SnS_n.

正项级数n=1un\sum_{n=1}^\infty u_nn=1vn\sum_{n=1}^\infty v_n满足NN+\exists N \in \mathbb N_+ s.t.: n>N\forall n \gt N, uncvnu_n \le cv_n, 其中c>0c \gt 0. 则:

  1. n=1vn\sum_{n=1}^\infty v_n收敛 \Rightarrow n=1un\sum_{n=1}^\infty u_n收敛.
  2. n=1un\sum_{n=1}^\infty u_n发散 \Rightarrow n=1vn\sum_{n=1}^\infty v_n发散.

e.g.:
广义调和级数/pp-级数:

ζ(p)=n=11np\zeta(p) = \sum_{n=1}^\infty \frac{1}{n^p}

因为有:

1p1=1+1xp  dx<ζ(p)<1+1+1xp  dx=pp1\frac{1}{p-1} = \int_1^{+\infty} \frac{1}{x^p} \;\text{d}x \lt \zeta(p) \lt 1+\int_1^{+\infty} \frac{1}{x^p} \;\text{d}x = \frac{p}{p-1}

故由于1+1xp  dx\int_1^{+\infty} \frac{1}{x^p} \;\text{d}x收敛当且仅当p>1p \gt 1, 进而pp-级数收敛当且仅当p>1p \gt 1.

比较判别法:
正项级数n=1un\sum_{n=1}^\infty u_nn=1vn\sum_{n=1}^\infty v_n满足limnunvn=k\lim_{n\to\infty}\frac{u_n}{v_n} = k, 则:

  1. n=1vn\sum_{n=1}^\infty v_n收敛, 0k<+0 \le k \lt +\infty \Rightarrow n=1un\sum_{n=1}^\infty u_n收敛.
  2. n=1vn\sum_{n=1}^\infty v_n发散, 0<k+0 \lt k \le +\infty \Rightarrow n=1un\sum_{n=1}^\infty u_n发散.

比阶判别法:
对于正项级数n=1un\sum_{n=1}^\infty u_n, 若存在pp使得limnnpun=k\lim_{n\to\infty} n^p u_n = k.

  1. p>1p \gt 1, 0k<+0 \le k \lt +\infty \Rightarrow n=1un\sum_{n=1}^\infty u_n收敛.
  2. p1p \le 1, 0<k+0 \lt k \le +\infty \Rightarrow n=1un\sum_{n=1}^\infty u_n发散.

比值判别法:

n=1qn\sum_{n=1}^\infty q^n

几何级数收敛当且仅当q<1\vert q \vert \lt 1. 故对于正项级数n=1un\sum_{n=1}^\infty u_n, 若limnun+1un=c\lim_{n\to\infty}\frac{u_{n+1}}{u_n} = c, 其中0c+0 \le c \le +\infty, 则:

  1. c<1c \lt 1 \Rightarrow n=1un\sum_{n=1}^\infty u_n收敛.
  2. c>1c \gt 1 \Rightarrow n=1un\sum_{n=1}^\infty u_n发散.
  3. c=1c = 1, 无法判断.

特别地, 即使limnun+1un\lim_{n\to\infty}\frac{u_{n+1}}{u_n}不存在, 若存在对应上界和下界满足上述条件, 也可用于判别.

根式判别法(柯西判别法):
对于正项级数n=1un\sum_{n=1}^\infty u_n, 若limnunn=c\lim_{n\to\infty}\sqrt[n]{u_n} = c, 其中0c+0 \le c \le +\infty, 则:

  1. c<1c \lt 1 \Rightarrow n=1un\sum_{n=1}^\infty u_n收敛.
  2. c>1c \gt 1 \Rightarrow n=1un\sum_{n=1}^\infty u_n发散.
  3. c=1c = 1, 无法判断.

拉贝判别法:
对于正项级数n=1un\sum_{n=1}^\infty u_n, 若存在μ\mu使得nn\to\infty时有unun+1=1+μn+o(1n)\frac{u_n}{u_{n+1}} = 1 + \frac{\mu}{n} + o(\frac{1}{n}), 则:

  1. μ>1\mu \gt 1 \Rightarrow n=1un\sum_{n=1}^\infty u_n收敛.
  2. μ<1\mu \lt 1 \Rightarrow n=1un\sum_{n=1}^\infty u_n发散.
  3. μ=1\mu = 1, 无法判断.

积分判别法:
对于正项级数n=1un\sum_{n=1}^\infty u_n, 若f(x)C[1,+)\exists f(x) \in \mathscr C[1,+\infty) s.t.: nN+,f(n)=un\forall n \in \mathbb N_+, f(n) = u_nf(x)f(x)为单调递减非负函数, 则: n=1un\sum_{n=1}^\infty u_n收敛当且仅当1+f(x)  dx\int_1^{+\infty} f(x) \;\text{d}x收敛. 特别地,

1+f(x)  dxn=1unu1+1+f(x)  dx\int_1^{+\infty} f(x)\;\text{d}x \le \sum_{n=1}^\infty u_n \le u_1 + \int_1^{+\infty} f(x)\;\text{d}x

unu_n非负单调递减, 则n=1un\sum_{n=1}^\infty u_n收敛当且仅当n=12nu2n\sum_{n=1}^\infty 2^n u_{2^n}收敛.

Proof:
Sn=k=1nukS_n = \sum_{k=1}^n u_k, Pn=k=1n2ku2kP_n = \sum_{k=1}^n 2^k u_{2^k}, 则:

S2n+11=k=0nj=2k2k+11ujk=0n2ku2k=u1+PnS_{2^{n+1}-1} = \sum_{k=0}^n \sum_{j=2^k}^{2^{k+1}-1} u_j \le \sum_{k=0}^n 2^ku_{2^k} = u_1 + P_n

S2n+1=k=0nj=2k+12k+1ujk=0n2ku2k+1=u1+12Pn+1S_{2^{n+1}} = \sum_{k=0}^n \sum_{j=2^k+1}^{2^{k+1}} u_j \ge \sum_{k=0}^n 2^ku_{2^{k+1}} = u_1 + \frac{1}{2}P_{n+1}

莱布尼茨判别法:
unu_n非负单调递减趋于00, 则S=n=1(1)n1unS = \sum_{n=1}^\infty (-1)^{n-1}u_n必定收敛: u1u2Su1u_1-u_2 \le S \le u_1. 且部分和数列Sn=k=1n(1)k1ukS_n = \sum_{k=1}^n (-1)^{k-1}u_k满足un+1un+2SSnun+1u_{n+1}-u_{n+2} \le \vert S-S_n \vert \le u_{n+1}. 注意莱布尼茨判别法仅仅是充分条件.


任意项级数: 任意一项都可以为正项或负项的级数. 若n=1un\sum_{n=1}^\infty \vert u_n \vert收敛, 则原任意项级数n=1un\sum_{n=1}^\infty u_n绝对收敛; 若原任意项级数收敛但n=1un\sum_{n=1}^\infty \vert u_n \vert不收敛, 则原任意项级数条件收敛.

定义任意项级数的正项部分un+=max{un,0}u_n^+ = \max\lbrace u_n,0 \rbrace和负项部分un=max{un,0}u_n^- = \max\lbrace -u_n,0 \rbrace. 则:

  1. n=1un\sum_{n=1}^\infty u_n绝对收敛当且仅当n=1un+\sum_{n=1}^\infty u_n^+n=1un\sum_{n=1}^\infty u_n^-均收敛.
  2. n=1un\sum_{n=1}^\infty u_n条件收敛则n=1un+\sum_{n=1}^\infty u_n^+n=1un\sum_{n=1}^\infty u_n^-均发散(单调递增无上界).

Proof:
(1) \Rightarrow显然: 0un+un0 \le u_n^+ \le \vert u_n \vert, 0unun0 \le u_n^- \le \vert u_n \vert.
(1) \Leftarrow显然: n=1un=n=1un++un\sum_{n=1}^\infty \vert u_n \vert = \sum_{n=1}^\infty u_n^++u_n^-.
(2), 根据(1), 条件收敛则至少一个发散, 不妨假设n=1un\sum_{n=1}^\infty u_n^-发散. 若n=1un+\sum_{n=1}^\infty u_n^+收敛, 则n=1un\sum_{n=1}^\infty u_n必定发散, 则不条件收敛.

绝对收敛级数满足交换律.

Proof:
绝对收敛级数的正项部分级数和负项部分级数均收敛, 收敛同号级数满足交换律.

黎曼定理:
条件收敛级数必定不满足交换律: 必定存在一个重排列方法使其发散; 且AR\forall A \in \mathbb R, 存在一个重排列方法使其收敛到AA.

Proof:
注意到条件收敛级数的正项部分级数和负项部分级数均发散.
MR\forall M \in \mathbb R, 可以取mink1\min k_1 s.t.: j=1k1uj+M\sum_{j=1}^{k_1} u_j^+ \ge M, 再取maxk2\max k_2 s.t.: j=1k1uj+j=1k2ujM\sum_{j=1}^{k_1} u_j^+ - \sum_{j=1}^{k_2} u_j^- \ge M, 以此类推, 故级数发散.
AR\forall A \in \mathbb R, 可以取mink1\min k_1 s.t.: j=1k1uj+A\sum_{j=1}^{k_1} u_j^+ \ge A, 再取mink2\min k_2 s.t.: j=1k1uj+j=1k2ujA\sum_{j=1}^{k_1} u_j^+ - \sum_{j=1}^{k_2} u_j^- \le A, 以此类推, 故级数收敛到AA.


级数乘法: 级数乘法有两种定义:
级数对角线加法(卷积):

cn=i=1naibn+1jk=1nck=i+jn+1aibj\begin{aligned} c_n &= \sum_{i=1}^n a_ib_{n+1-j} \\ \sum_{k=1}^n c_k &= \sum_{i+j \le n+1} a_ib_j \\ \end{aligned}

方块加法(多项式乘法):

cn=i=1n(aibn+anbi)k=1nck=(i=1nai)(j=1nbj)\begin{aligned} c_n &= \sum_{i=1}^n (a_ib_n + a_nb_i) \\ \sum_{k=1}^n c_k &= \left(\sum_{i=1}^n a_i\right) \cdot \left(\sum_{j=1}^n b_j\right) \\ \end{aligned}

柯西定理:
n=1an\sum_{n=1}^\infty a_nn=1bn\sum_{n=1}^\infty b_n绝对收敛, 则任意顺序相加的级数i,jaibj\sum_{i,j}^\infty a_ib_j均绝对收敛到级数乘法结果.

Proof:
考虑绝对值方块相加部分和Pn=(k=1nak)(k=1nbk)P_n' = \left(\sum_{k=1}^n \vert a_k \vert \right) \cdot \left(\sum_{k=1}^n \vert b_k \vert \right), 故其对应原级数Pn=(k=1nak)(k=1nbk)P_n = \left(\sum_{k=1}^n a_k \right) \cdot \left(\sum_{k=1}^n b_k \right)绝对收敛. 而绝对收敛数列满足交换律: (k=1nak)(k=1nbk)=i,jaibj\left(\sum_{k=1}^n a_k \right) \cdot \left(\sum_{k=1}^n b_k \right) = \sum_{i,j}^\infty a_ib_j.

Dirichlet判别法:
unu_n单调递减趋于00, n=1vn\sum_{n=1}^\infty v_n部分和有界, 则n=1unvn\sum_{n=1}^\infty u_nv_n收敛.
Abel判别法:
unu_n单调有界, n=1vn\sum_{n=1}^\infty v_n收敛, 则n=1unvn\sum_{n=1}^\infty u_nv_n收敛.


函数项级数: 函数un(x)u_n(x)定义在II上, 则:

n=1un(x)\sum_{n=1}^\infty u_n(x)

αI\forall \alpha \in I, 若n=1un(α)\sum_{n=1}^\infty u_n(\alpha)收敛, 则α\alpha收敛点. n=1un(x)\sum_{n=1}^{\infty} u_n(x)的收敛点集合为其收敛域DD. 若xDx \in D, 则有和函数:

S(x)=n=1un(x)S(x) = \sum_{n=1}^\infty u_n(x)

与常数项级数类似对于xDx \in D, 部分和函数有:

Sn(x)=k=1nuk(x)limnSn(x)=S(x)\begin{aligned} S_n(x) = \sum_{k=1}^n u_k(x) \\ \lim_{n\to\infty} S_n(x) = S(x) \\ \end{aligned}


一致收敛: 若n=1un(α)\sum_{n=1}^\infty u_n(\alpha)在区间II上处处收敛, 部分和函数列{Sn(x)}\lbrace S_n(x) \rbrace在区间II上一致收敛到和函数, 则该函数项级数在区间II上一致收敛. 具体地, 对于部分和函数列的一致收敛: ε>0\forall \varepsilon \gt 0, N>0\exists N \gt 0, n>N,xI\forall n \gt N, x \in I, Sn(x)S(x)<ε\vert S_n(x) - S(x) \vert \lt \varepsilon, 记为Sn(x)IS(x)        (n)S_n(x) \stackrel{I}{\rightrightarrows} S(x)\;\;\;\;(n \to \infty).

{fn(x)}\lbrace f_n(x) \rbrace一致收敛当且仅当ε>0\forall \varepsilon \gt 0, N>0\exists N \gt 0, n>N,xI\forall n \gt N, x \in I, p1\forall p \ge 1, fn+p(x)fn(x)<ε\vert f_{n+p}(x) - f_n(x) \vert \lt \varepsilon.

fn(x)If(x)f_n(x) \stackrel{I}{\rightrightarrows} f(x)当且仅当limnsupxIfn(x)f(x)=0\lim_{n\to\infty} \sup_{x \in I}\vert f_n(x)-f(x) \vert = 0.

{fn(x)}\lbrace f_n(x) \rbrace[a,b][a,b]上有定义, n1\forall n \ge 1, fn(x)f_n(x)aa处右连续, 但{fn(a)}\lbrace f_n(a) \rbrace发散, 则0<δ<ba\forall 0 \lt \delta \lt b-a, {fn(x)}\lbrace f_n(x) \rbrace(a,a+δ)(a,a+\delta)内非一致收敛.

函数项级数一致收敛柯西原理: n=1un(x)\sum_{n=1}^\infty u_n(x)在区间II上一致收敛当且仅当ε>0\forall \varepsilon \gt 0, N>0\exists N \gt 0, n>N,xI\forall n \gt N, x \in I, pN\forall p \in \mathbb N^\ast, k=n+1n+puk(x)<ε\left\vert \sum_{k=n+1}^{n+p} u_k(x) \right\vert \lt \varepsilon.

{un(x)}\lbrace u_n(x) \rbraceII上非一致收敛到00, 则n=1un(x)\sum_{n=1}^\infty u_n(x)II上非一致收敛.

n=1un(x)\sum_{n=1}^\infty u_n(x)[a,b][a,b]上有定义, n1\forall n \ge 1, un(x)u_n(x)aa处右连续, 但n=1un(x)\sum_{n=1}^\infty u_n(x)发散, 则0<δ<ba\forall 0 \lt \delta \lt b-a, n=1un(x)\sum_{n=1}^\infty u_n(x)(a,a+δ)(a,a+\delta)内非一致收敛.

Majorant判别法:
n1\forall n \ge 1, un(x)\vert u_n(x) \vert在区间II上有定义且有上界cnc_n. 若n=1cn\sum_{n=1}^\infty c_n收敛, 则n=1un(x)\sum_{n=1}^\infty u_n(x)II上绝对收敛且一致收敛.

Dirichlet判别法:
xI\forall x \in I, {un(x)}\lbrace u_n(x) \rbrace单调且un(x)I0u_n(x) \stackrel{I}{\rightrightarrows} 0, 且n=1vn(x)\sum_{n=1}^\infty v_n(x)部分和函数列一致有界(i.e.: M>0\exists M \gt 0 s.t.: k=1nvk(x)M\left\vert \sum_{k=1}^n v_k(x) \right\vert \le M), 则n=1un(x)vn(x)\sum_{n=1}^\infty u_n(x)v_n(x)II上一致收敛.

Abel判别法:
xI\forall x \in I, {un(x)}\lbrace u_n(x) \rbrace单调且函数列{un(x)}\lbrace u_n(x) \rbraceII上一致有界, 且n=1vn(x)\sum_{n=1}^\infty v_n(x)II上一致收敛, 则n=1un(x)vn(x)\sum_{n=1}^\infty u_n(x)v_n(x)II上一致收敛.

n=1un(x)\sum_{n=1}^\infty u_n(x)II上一致收敛到其和函数S(x)S(x), 且n1\forall n \ge 1, un(x)C(I)u_n(x) \in \mathscr C(I), 则S(x)C(I)S(x) \in \mathscr C(I).

fn(x)If(x)f_n(x) \stackrel{I}{\rightrightarrows} f(x)n1\forall n \ge 1, fn(x)C(I)f_n(x) \in \mathscr C(I), 则f(x)C(I)f(x) \in \mathscr C(I).

n1\forall n \ge 1, un(x)C(I)u_n(x) \in \mathscr C(I)S(x)∉C(I)S(x) \not \in \mathscr C(I), 则n=1un(x)\sum_{n=1}^\infty u_n(x)II上非一致收敛.

n=1un(x)\sum_{n=1}^\infty u_n(x)[a,b][a,b]上一致收敛到其和函数S(x)S(x), 且n1\forall n \ge 1, un(x)C[a,b]u_n(x) \in \mathscr C[a,b], 则S(x)R[a,b]S(x) \in \mathscr R[a,b]且:

abS(x)  dx=n=1abun(x)  dx=limnabSn(x)  dx\int_a^b S(x)\;\text{d}x = \sum_{n=1}^\infty \int_a^b u_n(x)\;\text{d}x = \lim_{n\to\infty} \int_a^b S_n(x)\;\text{d}x

一般地, 若fn(x)[a,b]f(x)f_n(x) \stackrel{[a,b]}{\rightrightarrows} f(x), 且n1\forall n \ge 1, fn(x)C[a,b]f_n(x) \in \mathscr C[a,b], 则f(x)R[a,b]f(x) \in \mathscr R[a,b]且:

abf(x)  dx=limnabfn(x)  dx\int_a^b f(x)\;\text{d}x = \lim_{n\to\infty} \int_a^b f_n(x)\;\text{d}x

n=1un(x)=S(x)\sum_{n=1}^\infty u_n(x) = S(x), n=1un(x)\sum_{n=1}^\infty u_n'(x)[a,b][a,b]上一致收敛, 且n1\forall n \ge 1, un(x)C(1)[a,b]u_n(x) \in \mathscr C^{(1)}[a,b], 则S(x)C(1)[a,b]S(x) \in \mathscr C^{(1)}[a,b]且:

S(x)=n=1un(x)S'(x) = \sum_{n=1}^\infty u'_n(x)

一般地, 若fn(x)[a,b]f(x)f_n(x) \stackrel{[a,b]}{\rightrightarrows} f(x), 且n1\forall n \ge 1, fn(x)C(1)[a,b]f_n(x) \in \mathscr C^{(1)}[a,b], 则f(1)(x)C[a,b]f^{(1)}(x) \in \mathscr C[a,b]且:

abf(x)  dx=limnabfn(x)  dx\int_a^b f'(x)\;\text{d}x = \lim_{n\to\infty} \int_a^b f'_n(x)\;\text{d}x


幂级数:

n=0an(xa)n\sum_{n=0}^\infty a_n(x-a)^n

Abel第一定理:
n=0anxn\sum_{n=0}^\infty a_nx^nx00x_0 \ne 0处收敛, 则h<x0\forall \vert h \vert \lt \vert x_0 \vert, n=0anxn\sum_{n=0}^\infty a_nx^n[h,h][-h,h]上绝对收敛且一致收敛.

Proof:
anxn=anx0n(xx0)nanx0nhx0n\vert a_nx^n \vert = \vert a_nx_0^n \vert \cdot \left\vert \left(\frac{x}{x_0}\right)^n \right\vert \le \vert a_nx_0^n \vert \cdot \left\vert \frac{h}{x_0} \right\vert^n. 注意到anx0na_nx_0^n趋于00故有上界MM, 根据Majorant判别法, 该式Mhx0n\le M \cdot \left\vert \frac{h}{x_0} \right\vert^n, 后者为公比小于11的等比数列, 故收敛. 故原级数绝对收敛且一致收敛.

n=0anxn\sum_{n=0}^\infty a_nx^nx10x_1 \ne 0处发散, 则x2>x1\forall \vert x_2 \vert \gt \vert x_1 \vert, n=1anx2n\sum_{n=1}^\infty a_nx_2^n发散.

n=0anxn\sum_{n=0}^\infty a_nx^nx00x_0 \ne 0处收敛, 在x10x_1 \ne 0处发散, 则!r>0\exists ! r \gt 0, 使得n=0anxn\sum_{n=0}^\infty a_nx^n(r,r)(-r,r)内绝对收敛, 在[r,r][-r,r]外处处发散.

收敛半径: 若!r[0,]\exists! r \in [0,\infty] s.t.: x<r\forall \vert x \vert \lt r, n=0anxn\sum_{n=0}^\infty a_nx^n绝对收敛, x>r\forall \vert x \vert \gt r, n=0anxn\sum_{n=0}^\infty a_nx^n发散. 则rrn=0anxn\sum_{n=0}^\infty a_nx^n的收敛半径; (r,r)(-r,r)n=0anxn\sum_{n=0}^\infty a_nx^n的收敛区间(注意收敛区间一定是开区间).

幂级数的收敛域为收敛区间并上收敛的区间端点. 收敛域是以原点为中心的区间.

对于n=0anxn\sum_{n=0}^\infty a_nx^n的收敛半径rr, [a,b](r,r)\forall [a,b] \subseteq (-r,r), n=0anxn\sum_{n=0}^\infty a_nx^n[a,b][a,b]上绝对收敛且一致收敛.

limnan+1an=l\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = llimnann=l\lim_{n\to\infty}\sqrt[n]{\vert a_n \vert} = l, 则n=0anxn\sum_{n=0}^\infty a_nx^n的收敛半径为r=1/lr = 1/l. 特别地, l=0l = 0r=+r = +\infty; l=+l = +\inftyr=0r = 0.


Abel第二定理:
n=0anxn\sum_{n=0}^\infty a_nx^n收敛半径为RR且在RR(或R-R)处收敛, 则0<r<R\forall 0 \lt r \lt R, n=0anxn\sum_{n=0}^\infty a_nx^n[r,R][-r,R](或[R,r][-R,r])上一致收敛.

Proof:
[r,R]=[r,0][0,R][-r,R] = [-r,0] \bigcup [0,R]. [r,0](R,R)[-r,0] \subseteq (-R,R)显然一致收敛, 对于[0,R][0,R]: n=0anxn=n=0anRnxnRn\sum_{n=0}^\infty a_nx^n = \sum_{n=0}^\infty a_nR^n \cdot \frac{x^n}{R^n}, 根据Abel判别法, 前者与xx无关在[0,R][0,R]一致收敛, 后者在[0,R][0,R]单调递减且一致收敛, 则原级数在[0,R][0,R]一致收敛.

n=0anxn\sum_{n=0}^\infty a_nx^n收敛半径为rr, 则:

  1. S(x)C(r,r)S(x) \in \mathscr C(-r,r).
  2. 若级数在rr处收敛, 则S(x)C(r,r]S(x) \in \mathscr C(-r,r].
  3. 若级数在r-r处收敛, 则S(x)C[r,r)S(x) \in \mathscr C[-r,r).
  4. [a,b](r,r)\forall [a,b] \subseteq (-r,r), S(x)R[a,b]S(x) \in \mathscr R[a,b], 且:

    abS(x)  dx=n=0abanxn  dx=n=01n+1an(bn+1an+1)\int_a^b S(x)\;\text{d}x = \sum_{n=0}^\infty \int_a^b a_nx^n \;\text{d}x = \sum_{n=0}^\infty \frac{1}{n+1}a_n(b^{n+1}-a^{n+1})

n=01n+1anxn+1\sum_{n=0}^\infty \frac{1}{n+1}a_nx^{n+1}, n=0anxn\sum_{n=0}^\infty a_nx^n, n=1nanxn1\sum_{n=1}^\infty na_nx^{n-1}收敛半径相同.

n=0anxn\sum_{n=0}^\infty a_nx^n收敛半径为rr, 则S(x)C()(r,r)S(x) \in \mathscr C^{(\infty)}(-r,r)且:

S(k)(x)=n=knkanxnkS^{(k)}(x) = \sum_{n=k}^\infty n^{\underline k} a_n x^{n-k}

(注意S(x)S(x)仅在收敛域上有意义)


泰勒级数: 若f(x)f(x)(ar,a+r)(a-r,a+r)内能展开成幂级数f(x)=n=0an(xa)nf(x) = \sum_{n=0}^\infty a_n(x-a)^n, 则rr为该级数的收敛半径, f(x)f(x)为该级数的和函数, f(x)f(x)(ar,a+r)(a-r,a+r)内存在任意阶导数且f(k)(x)=S(k)(x)f^{(k)}(x) = S^{(k)}(x). 特别地, f(k)(a)=k!akf^{(k)}(a) = k!a_k, 故ak=f(k)(a)k!a_k = \frac{f^{(k)}(a)}{k!}唯一确定, 则:

f(x)n=0f(n)(a)n!(xa)nf(x) \sim \sum_{n=0}^\infty \frac{f^{(n)}(a)}{n!}(x-a)^n

称右侧级数为f(x)f(x)aa点的泰勒级数, f(x)f(x)a=0a=0处的泰勒级数为f(x)f(x)麦克劳林级数.

f(x)f(x)在点aa处可以展开为泰勒级数当且仅当f(x)f(x)(ar,a+r)(a-r,a+r)内任意阶导数存在, 且在x(ar,a+r)\forall x \in (a-r,a+r), nn\to\infty时拉格朗日余项Rn(x)R_n(x)趋近于00.

limnRn=limnf(n+1)(ξ)(xa)n+1(n+1)!\lim_{n\to\infty} R_n = \lim_{n\to\infty}\frac{f^{(n+1)}(\xi)(x-a)^{n+1}}{(n+1)!}

注意到一个充分条件为: f(x)f(x)(ar,a+r)(a-r,a+r)内各阶导数一致有界, 则:

limnRnlimnMrn+1(n+1)!=Mlimnrn+1(n+1)!=0\lim_{n\to\infty} \vert R_n \vert \le \lim_{n\to\infty}\frac{Mr^{n+1}}{(n+1)!} = M\lim_{n\to\infty}\frac{r^{n+1}}{(n+1)!} = 0

e.g.:

exn=01n!xnsinxn=0(1)n(2n+1)!x2n+1cosxn=0(1)n(2n)!x2nln(1+x)n=1(1)n1nxnx(1,1](1+x)αn=0αnn!xnx{(1,1)α1(1,1]1<α<0[1,1]α>0arcsinxn=0(2n1)!!(2n+1)(2n)!!x2n+1x[1,1]arctanxn=0(1)n2n+1x2n+1x[1,1]\begin{aligned} e^x &\sim \sum_{n=0}^\infty \frac{1}{n!}x^n \\ \sin x &\sim \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}x^{2n+1} \\ \cos x &\sim \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}x^{2n} \\ \ln(1+x) &\sim \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n}x^n &x \in (-1,1] \\ (1+x)^\alpha &\sim \sum_{n=0}^\infty \frac{\alpha^{\underline n}}{n!}x^n &x \in \begin{cases}(-1,1) & \alpha \le -1 \\ (-1,1] & -1 \lt \alpha \lt 0 \\ [-1,1] & \alpha \gt 0 \\\end{cases} \\ \arcsin x &\sim \sum_{n=0}^\infty \frac{(2n-1)!!}{(2n+1)(2n)!!}x^{2n+1} &x \in [-1,1] \\ \arctan x &\sim \sum_{n=0}^\infty \frac{(-1)^n}{2n+1}x^{2n+1} &x \in [-1,1] \\ \end{aligned}

特别地,

11+x=(1+x)1/2=n=1(1)n(2n1)!!(2n)!!x2n1+x=(1+x)1/2=1+12x+n=2(1)n+1(2n3)!!(2n)!!xnπ2=limn((2n)!!(2n1)!!)212n+1\begin{aligned} \frac{1}{\sqrt{1+x}} &= (1+x)^{-1/2} = \sum_{n=1}^\infty \frac{(-1)^n(2n-1)!!}{(2n)!!} x^{2n} \\ \sqrt{1+x} &= (1+x)^{1/2} = 1+\frac{1}{2}x+\sum_{n=2}^\infty (-1)^{n+1}\frac{(2n-3)!!}{(2n)!!}x^n \\ \frac{\pi}{2} &= \lim_{n\to\infty} \left( \frac{(2n)!!}{(2n-1)!!}\right)^2\frac{1}{2n+1} \end{aligned}


三角函数系: m,nN+\forall m,n \in \mathbb N^+:

ππsinnxcosmx  dx=12ππsin((n+m)x)+sin((nm)x)  dx=0\int_{-\pi}^\pi \sin nx \cos mx \;\text{d}x = \frac{1}{2}\int_{-\pi}^\pi \sin((n+m)x) + \sin((n-m)x)\;\text{d}x = 0

ππsinnxsinmx  dx=π[m=n]\int_{-\pi}^\pi \sin nx \sin mx \;\text{d}x = \pi [m=n]

ππcosnxcosmx  dx=π[m=n]\int_{-\pi}^\pi \cos nx \cos mx \;\text{d}x = \pi [m=n]

{12π,1πcos(nx),1πsin(nx)}\lbrace \frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt \pi}\cos (nx),\frac{1}{\sqrt \pi}\sin(nx) \rbrace标准正交三角函数系: 即任意不同的二者内积为00, 相同的内积为11.

Fourier级数: 设f(x)R[π,π]f(x) \in \mathscr R[-\pi,\pi], 则存在Fourier系数{an}n=0,{bn}n=1\lbrace a_n \rbrace_{n=0}^\infty, \lbrace b_n \rbrace_{n=1}^\infty s.t.: f(x)f(x)的Fourier级数为:

f(x)a02+n=1ancos(nx)+bnsin(nx)(x[π,π])f(x) \sim \frac{a_0}{2} +\sum_{n=1}^\infty a_n \cos (nx) + b_n \sin (nx) \qquad \qquad (x \in [-\pi,\pi])

若Fourier级数收敛则可记为:

f(x)=a02+n=1ancos(nx)+bnsin(nx)(x[π,π])f(x) = \frac{a_0}{2} +\sum_{n=1}^\infty a_n \cos (nx) + b_n \sin (nx) \qquad \qquad (x \in [-\pi,\pi])

对等式两侧同时乘cosnx\cos nx并积分, 可得:

an=1πππf(x)cos(nx)  dxa_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x)\cos(nx) \;\text{d}x

对等式两侧同时乘sinnx\sin nx并积分, 可得:

bn=1πππf(x)sin(nx)  dxb_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x)\sin(nx) \;\text{d}x

Dirichlet收敛定理:
f(x)f(x)[a,b][a,b]上有界, 且存在分割a=x0<x1<<xn1<xn=ba = x_0 \lt x_1 \lt \cdots \lt x_{n-1} \lt x_n = b使得在任意区间(xk1,xk)(x_{k-1},x_k)f(x)f(x)单调, 则称f(x)f(x)分段单调. 若f(x)f(x)2π2\pi为周期, 在[π,π][-\pi,\pi]分段单调有界, 则f(x)f(x)的Fourier级数在R\mathbb R上收敛, 其在xx处的展开收敛到:

12(f+(x)+f(x))\frac{1}{2}\Big(f_+(x) + f_-(x)\Big)

f(x)f(x)为奇函数, 则an=0a_n = 0; 若f(x)f(x)为偶函数, 则bn=0b_n = 0.

f(x)f(x)周期为2l2l, 则可将φ(y)=f(lπy)=f(x)\varphi(y) = f(\frac{l}{\pi}y) = f(x)展开为Fourier级数. 故:

f(x)a02+n=1ancos(nπlx)+bnsin(nπlx)f(x) \sim \frac{a_0}{2} +\sum_{n=1}^\infty a_n \cos \left(\frac{n\pi}{l}x\right) + b_n \sin \left(\frac{n\pi}{l}x\right)

an=1lllf(x)cos(nπlx)  dxa_n = \frac{1}{l}\int_{-l}^l f(x)\cos\left(\frac{n\pi}{l}x\right) \;\text{d}x

bn=1lllf(x)sin(nπlx)  dxb_n = \frac{1}{l}\int_{-l}^l f(x)\sin\left(\frac{n\pi}{l}x\right) \;\text{d}x

三角多项式: 对于R\mathbb R上的{ck}k=0n,{dk}k=1n\lbrace c_k \rbrace_{k=0}^n, \lbrace d_k \rbrace_{k=1}^n, 若cndn0c_nd_n \ne 0, 则有nn阶三角多项式:

Tn(x)=12c0+k=1nckcos(kx)+dksin(kx)T_n(x) = \frac{1}{2}c_0 + \sum_{k=1}^n c_k \cos(kx) + d_k \sin(kx)

f(x)R[π,π]f(x) \in \mathscr R[-\pi,\pi]2π2\pi为周期, 则其Fourier级数的nn阶部分和Sn(f,x)S_n(f,x)为一个阶数n\le n的三角多项式, 而且该三角多项式最小化方均误差:

Sn(f,x)=arg minTk(x),knππ(f(x)Tk(x))2  dxS_n(f,x) = \argmin_{T_k(x), k \le n} \int_{-\pi}^\pi (f(x)-T_k(x))^2\;\text{d}x

Proof:
Tk(x)\forall T_k(x) s.t.: knk \le n:

12πππ(f(x)Tk(x))2  dx=12πππf2(x)+Tk2(x)  dx1πππf(x)Tk(x)  dx=12πππf2(x)  dx+12(12c02+k=1nck2+dk2)(12a0c0+k=1nckak+dkbk)=12πππf2(x)  dx+12(12(a0c0)2+k=1n(akck)2+(dkbk)2)012(12a02+k=1nak2+bk2)12πππf2(x)  dx12(12a02+k=1nak2+bk2)=12πππ(f(x)Sn(f,x))2  dx\begin{aligned} \frac{1}{2\pi}\int_{-\pi}^\pi (f(x)-T_k(x))^2\;\text{d}x &= \frac{1}{2\pi}\int_{-\pi}^\pi f^2(x) + T^2_k(x) \;\text{d}x - \frac{1}{\pi} \int_{-\pi}^\pi f(x)T_k(x)\;\text{d}x \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x + \frac{1}{2}\left(\frac{1}{2}c_0^2 + \sum_{k=1}^n c_k^2+d_k^2 \right) - \left(\frac{1}{2}a_0c_0 + \sum_{k=1}^n c_ka_k+d_kb_k\right) \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x + \underbrace{\frac{1}{2}\left(\frac{1}{2}(a_0-c_0)^2+\sum_{k=1}^n (a_k-c_k)^2+(d_k-b_k)^2 \right)}_{\ge 0} - \frac{1}{2}\left(\frac{1}{2}a_0^2 + \sum_{k=1}^n a_k^2+b_k^2 \right) \\ &\ge \frac{1}{2\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x - \frac{1}{2}\left(\frac{1}{2}a_0^2 + \sum_{k=1}^n a_k^2+b_k^2 \right) \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi (f(x)-S_n(f,x))^2\;\text{d}x \end{aligned}

第一逼近定理:
f(x)C[a,b]\forall f(x) \in \mathscr C[a,b], ε>0\forall \varepsilon \gt 0, \exists 多项式 p(x)p(x) s.t.: x[a,b],f(x)p(x)<ε\forall x \in [a,b], \vert f(x)-p(x) \vert \lt \varepsilon.

第二逼近定理:
f(x)\forall f(x)连续且周期为2π2\pi, ε>0\forall \varepsilon \gt 0, \exists 三角多项式 q(x)q(x) s.t.: xR,f(x)q(x)<ε\forall x \in \mathbb R, \vert f(x)-q(x) \vert \lt \varepsilon.

Lebesgue可积函数逼近定理:
f(x)R[a,b]\forall f(x) \in \mathscr R[a,b], ε>0\forall \varepsilon \gt 0, g(x)C[a,b]\exists g(x) \in \mathscr C[a,b] s.t.: ab(f(x)g(x))2  dx<ε\int_a^b (f(x)-g(x))^2\;\text{d}x \lt \varepsilon.

由上述定理可进一步得到推论:
f(x)\forall f(x)可积且周期为2π2\pi, ε>0\forall \varepsilon \gt 0, \exists 三角多项式 q(x)q(x) s.t.: ππ(f(x)q(x))2  dx<ε\int_{-\pi}^{\pi} (f(x)-q(x))^2\;\text{d}x \lt \varepsilon.

Bessel不等式: 若f(x)R[π,π]f(x) \in \mathscr R[-\pi,\pi]2π2\pi为周期, 则nN+\forall n \in \mathbb N^+:

1πππf2(x)  dx12a02+k=1nak2+bk2\frac{1}{\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x \ge \frac{1}{2}a_0^2 + \sum_{k=1}^n a_k^2+b_k^2

Parseval等式: 若f(x)R[π,π]f(x) \in \mathscr R[-\pi,\pi]2π2\pi为周期, 则:

1πππf2(x)  dx=12a02+k=1ak2+bk2\frac{1}{\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x = \frac{1}{2}a_0^2 + \sum_{k=1}^\infty a_k^2+b_k^2

更一般地, 若f(x),g(x)R[π,π]f(x),g(x) \in \mathscr R[-\pi,\pi]2π2\pi为周期, 则:

1πππf(x)g(x)  dx=12a0c0+k=1akck+bkdk\frac{1}{\pi}\int_{-\pi}^\pi f(x)g(x) \;\text{d}x = \frac{1}{2}a_0c_0 + \sum_{k=1}^\infty a_kc_k+b_kd_k

Riemann-Lebesgue引理:
f(x)R[a,b]f(x) \in \mathscr R[a,b], 则:

limλabf(x)cos(λx)  dx=0limλabf(x)sin(λx)  dx=0\begin{aligned} \lim_{\vert \lambda \vert \to \infty} \int_a^b f(x) \cos(\lambda x)\;\text{d}x = 0 \\ \lim_{\vert \lambda \vert \to \infty} \int_a^b f(x) \sin(\lambda x)\;\text{d}x = 0 \\ \end{aligned}

故若f(x)R[a,b]f(x) \in \mathscr R[a,b], 则limnan=limnbn=0\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0.
更进一步, 若f(x)R[a,b]f'(x) \in \mathscr R[a,b]f(π)=f(π)f(-\pi)=f(\pi), 则an=o(1n),bn=o(1n)a_n=o(\frac{1}{n}), b_n=o(\frac{1}{n}). 这是因为an=1nbn,bn=1nana_n = \frac{1}{n}b_n', b_n = -\frac{1}{n}a'_n.


复谐振动:

x=Ceiωt=rei(θ+ωt)=r(cos(θ+ωt)+isin(θ+ωt))x = Ce^{i\omega t} = re^{i(\theta + \omega t)} = r(\cos(\theta+\omega t)+ i \sin(\theta+\omega t))

其中C=reiθC = re^{i\theta}复振幅, C\vert C \vert振幅, θ\theta初相, ωR\omega \in \mathbb R圆频率.

复数形式Fourier级数:
f(t)R[l,l]f(t) \in \mathscr R[-l,l]周期为2l2l, 令ω=π/l\omega = \pi/l, 则其Fourier级数可以写成:

f(t)a02+n=1ancos(nωt)+bnsin(nωt)a02+12n=1an(einωt+einωt)+bn(ieinωtieinωt)a02+12n=1(anibn)einωt+(an+ibn)einωtk=ckeikωt\begin{aligned} f(t) &\sim \frac{a_0}{2} + \sum_{n=1}^\infty a_n\cos(n \omega t) +b_n\sin( n\omega t) \\ &\sim \frac{a_0}{2} + \frac{1}{2}\sum_{n=1}^\infty a_n(e^{in\omega t}+e^{-in\omega t})+b_n(ie^{-in\omega t}-ie^{in\omega t}) \\ &\sim \frac{a_0}{2} + \frac{1}{2}\sum_{n=1}^\infty (a_n-ib_n)e^{in\omega t} + (a_n+ib_n)e^{-in\omega t} \\ &\sim \sum_{k=-\infty}^\infty c_ke^{ik\omega t} \end{aligned}

其中c0=a0/2c_0 = a_0/2, ck=akibk2c_k = \frac{a_k-ib_k}{2}, ck=ak+ibk2=ckc_{-k} = \frac{a_k+ib_k}{2} = \overline{c_k} (k>0k \gt 0), 则有:

ck=12lllf(t)eikωt  dt(kZ)c_k = \frac{1}{2l}\int_{-l}^l f(t)e^{-ik\omega t}\;\text{d}t \qquad \qquad (k \in \mathbb Z)

复值函数内积: 若f(x),g(x)f(x),g(x)[l,l][-l,l]上可积实变复值函数, 其内积为:

f,g=12lllf(t)g(t)  dt\langle f,g \rangle = \frac{1}{2l}\int_{-l}^l f(t)\overline{g(t)}\;\text{d}t

{eikωtkZ}\lbrace e^{ik\omega t} \vert k \in \mathbb Z\rbrace为标准正交函数系.

f(t)k=ckeikωtk=f,eikωteikωtf(t) \sim \sum_{k=-\infty}^\infty c_ke^{ik\omega t} \sim \sum_{k=-\infty}^\infty \langle f,e^{ik\omega t} \rangle e^{ik\omega t}

Fourier积分: f(t)C(R)f(t) \in\mathscr C(\mathbb R)为非周期函数, fl(t)f_l(t)f(t)f(t)定义在[l,l][-l,l]上的部分延拓产生的周期为2l2l的周期函数(i.e.: f(t+2l)=f(t)f(t+2l) = f(t)). 若ff在任意有限区间上分段单调, 则ff可以展开成Fourier级数, 则:

fl(t)=k=ckeikωt=k=f,eikωteiωkt=12lk=llf(u)eikω(tu)  du\begin{aligned} f_l(t) &= \sum_{k=-\infty}^\infty c_k e^{ik\omega t} \\ &= \sum_{k=-\infty}^\infty \langle f,e^{ik\omega t} \rangle e^{i\omega_k t} \\ &= \frac{1}{2l}\sum_{k=-\infty}^\infty \int_{-l}^l f(u)e^{ik\omega(t-u)}\;\text{d}u \\ \end{aligned}

考虑构造连续实变量ωk=kω\omega_k = k\omega. 则12l=12π(ωkωk1)=12πΔωk\frac{1}{2l} = \frac{1}{2\pi}(\omega_k-\omega_{k-1}) = \frac{1}{2\pi} \Delta \omega_k. 那么:

f(t)=liml+fl(t)=liml+12πk=Δωkllf(u)eikω(tu)  du=limΔωk=πl012πk=Δωkllf(u)eiωk(tu)  du=12π++f(u)eiωω(tu)  du  dωf(t)=12π++f(u)eiω(tu)  du  dω\begin{aligned} f(t) &= \lim_{l\to+\infty} f_l(t) \\ &= \lim_{l\to+\infty} \frac{1}{2\pi}\sum_{k=-\infty}^\infty \Delta \omega_k \cdot \int_{-l}^l f(u)e^{ik\omega(t-u)}\;\text{d}u \\ &= \lim_{\Delta\omega_k=\frac{\pi}{l} \to 0} \frac{1}{2\pi}\sum_{k=-\infty}^\infty \Delta \omega_k \cdot \int_{-l}^l f(u)e^{i\omega_k(t-u)}\;\text{d}u \\ &= \frac{1}{2\pi}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)e^{i\omega_{\omega}(t-u)}\;\text{d}u\;\text{d}\omega \\ f(t) &= \frac{1}{2\pi}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)e^{i\omega(t-u)}\;\text{d}u\;\text{d}\omega \\ \end{aligned}

ffR\mathbb R上绝对可积且在tt处连续, 则上述积分式为f(t)f(t)Fourier积分.

Fourier变换: 根据Fourier积分可以定义含参积分:

f^(ω)=12π+f(u)eiωu  duf(t)=+f^(ω)eiωt  dω\begin{aligned} \hat f(\omega) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(u)e^{-i\omega u}\;\text{d}u \\ f(t) &= \int_{-\infty}^{+\infty} \hat f(\omega)e^{i\omega t}\;\text{d}\omega \end{aligned}

f^\hat fffFourier变换, fff^\hat fFourier逆变换.

特别地, 由于eiωu=cos(ωu)+isin(ωu)e^{i\omega u} = \cos(\omega u) + i \sin(\omega u), 而sin(ωu)\sin(\omega u)为关于原点的奇函数, 积分为00, 故也可写作:

f^(ω)=12π+f(u)cos(ωu)  duf(t)=+f^(ω)cos(ωt)  dω\begin{aligned} \hat f(\omega) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(u)\cos(\omega u)\;\text{d}u \\ f(t) &= \int_{-\infty}^{+\infty} \hat f(\omega)\cos(\omega t)\;\text{d}\omega \end{aligned}

离散Fourier变换:
ff2π2\pi为周期, 则:

f^(n)=12πf(u)einu  duf(t)=n=+f^(n)eint\begin{aligned} \hat f(n) &= \frac{1}{2\pi}\int_{-\infty}^\infty f(u)e^{-inu}\;\text{d}u \\ f(t) &= \sum_{n=-\infty}^{+\infty} \hat f(n)e^{int} \\ \end{aligned}

f,gf,gR\mathbb R上绝对可积, 则:

αf+βg^=αf^(t)+βg^\widehat{\alpha f + \beta g} = \alpha \hat f(t) + \beta \hat g

f(x),f(x)f(x),f'(x)R\mathbb R上绝对可积且limtf(t)=0\lim_{t\to\infty} f(t) = 0, 则:

f^(x)=(ix)f^(x)\hat f'(x) = (ix)\hat f(x)

更进一步, 若kN\forall k \in \mathbb N, f(k)f^{(k)}R\mathbb R绝对可积且limtf(k)(t)=0\lim_{t\to\infty} f^{(k)}(t) = 0, 则:

f^(k)(x)=(ix)kf^(x)\hat f^{(k)}(x) = (ix)^k \hat f(x)

f,gf,g满足常系数微分方程g(t)=k=0nakf(k)(t)g(t) = \sum_{k=0}^n a_k f^{(k)}(t), 则:

f^=g^k=0nak(it)k\hat f = \frac{\hat g}{\sum_{k=0}^n a_k(it)^k}

卷积:

(fg)(t)=12πf(tu)g(u)  du(f \ast g)(t) = \frac{1}{2\pi} \int_{-\infty}^\infty f(t-u)g(u)\;\text{d}u

f,gf,gR\mathbb R上绝对可积, 则:

fg^=f^g^\widehat{f \ast g} = \hat f \cdot \hat g

f,g,hf,g,h满足卷积方程f=g+hff = g + h \ast f, 则:

f^=g^1h^\hat f = \frac{\hat g}{1-\hat h}


扫描二维码即可在手机上查看这篇文章,或者转发二维码来分享这篇文章:


文章作者: Magolor
文章链接: https://magolor.cn/2020/06/07/2020-06-07-blog-01/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Magolor
扫描二维码在手机上查看或转发二维码以分享Magolor的博客