二元函数 : f : Ω → R f:\Omega \to \mathbb R f : Ω → R s.t.: Ω ⊆ R 2 , ∀ ( x , y ) ∈ Ω , ∃ ! z ∈ R , z = f ( x , y ) \Omega \subseteq \mathbb R^2, \forall (x,y) \in \Omega, \exists! z \in \mathbb R, z = f(x,y) Ω ⊆ R 2 , ∀ ( x , y ) ∈ Ω , ∃ ! z ∈ R , z = f ( x , y ) .
二元函数极限与连续
二重极限 : p 0 ∈ Ω ⊆ R 2 p_0 \in \Omega \subseteq \mathbb R^2 p 0 ∈ Ω ⊆ R 2 为聚点, 二元函数f f f 定义在B 0 ( p 0 , δ 0 ) ⋂ Ω B_0(p_0,\delta_0) \bigcap \Omega B 0 ( p 0 , δ 0 ) ⋂ Ω 上, 若∃ A ∈ R , ∀ ε > 0 , ∃ 0 < δ < δ 0 , p ∈ B 0 ( p 0 , δ 0 ) ⋂ Ω \exists A \in \mathbb R, \forall \varepsilon \gt 0, \exists 0 \lt \delta \lt \delta_0, p \in B_0(p_0,\delta_0) \bigcap \Omega ∃ A ∈ R , ∀ ε > 0 , ∃ 0 < δ < δ 0 , p ∈ B 0 ( p 0 , δ 0 ) ⋂ Ω , 都有: ∣ f ( p ) − A ∣ < ε \vert f(p)-A \vert \lt \varepsilon ∣ f ( p ) − A ∣ < ε , 则lim p → p 0 p ∈ Ω = A \lim_{p\to p_0 \atop p\in\Omega} = A lim p ∈ Ω p → p 0 = A . 若p 0 p_0 p 0 为Ω \Omega Ω 内点, 则可简记为lim p → p 0 f ( p ) = lim ∥ p − p 0 ∥ → 0 f ( p ) = lim x → x 0 y → y 0 f ( x , y ) = A \lim_{p \to p_0} f(p) = \lim_{\| p-p_0 \| \to 0} f(p) = \lim_{x\to x_0 \atop y\to y_0} f(x,y) = A lim p → p 0 f ( p ) = lim ∥ p − p 0 ∥ → 0 f ( p ) = lim y → y 0 x → x 0 f ( x , y ) = A .
若二重极限存在, 则任意路径趋近于p 0 p_0 p 0 , 极限值相同.
累次极限 : lim x → x 0 lim y → y 0 f ( x , y ) \lim_{x \to x_0} \lim_{y \to y_0} f(x,y) lim x → x 0 lim y → y 0 f ( x , y ) 与lim y → y 0 lim x → x 0 f ( x , y ) \lim_{y \to y_0} \lim_{x \to x_0} f(x,y) lim y → y 0 lim x → x 0 f ( x , y ) .
若二重极限和累次极限均存在, 则相等.
若累次极限不相等, 则二重极限不存在.
连续 : ∀ ε > 0 , ∃ δ > 0 , ∀ p ∈ B ( p 0 , δ ) ⋂ D ( f ) \forall \varepsilon \gt 0, \exists \delta \gt 0, \forall p \in B(p_0,\delta) \bigcap D(f) ∀ ε > 0 , ∃ δ > 0 , ∀ p ∈ B ( p 0 , δ ) ⋂ D ( f ) , 都有∣ f ( p ) − f ( p 0 ) ∣ < ε \vert f(p)-f(p_0) \vert \lt \varepsilon ∣ f ( p ) − f ( p 0 ) ∣ < ε , 则f f f 在p 0 p_0 p 0 处连续.
否则f f f 在p 0 p_0 p 0 处间断, p 0 p_0 p 0 为f f f 间断点 . lim p → p 0 f ( p ) \lim_{p \to p_0}f(p) lim p → p 0 f ( p ) 存在但不等于f ( p 0 ) f(p_0) f ( p 0 ) 则为可去间断点 , 不存在则为本性间断点 .
f f f 在p 0 p_0 p 0 二重极限存在, 则f f f 在p 0 p_0 p 0 处连续.
若p 0 p_0 p 0 为D ( f ) D(f) D ( f ) 聚点, f f f 在p 0 p_0 p 0 处连续 ⇔ \Leftrightarrow ⇔ f f f 在p 0 p_0 p 0 二重极限为f ( p 0 ) f(p_0) f ( p 0 ) .
若p 0 p_0 p 0 为D ( f ) D(f) D ( f ) 孤立点, f f f 在p 0 p_0 p 0 处必连续.
若p 0 p_0 p 0 为f f f 间断点, p 0 p_0 p 0 必为D ( f ) D(f) D ( f ) 聚点.
若p 0 p_0 p 0 处f f f 连续, 则一元函数f ( x , y 0 ) f(x,y_0) f ( x , y 0 ) 与f ( x 0 , y ) f(x_0,y) f ( x 0 , y ) 在( x 0 , y 0 ) (x_0,y_0) ( x 0 , y 0 ) 处连续.
若f f f 在开集D D D 上连续或在闭集D D D 内部和边界点上连续, 则f ∈ C ( D ) f \in \mathscr C(D) f ∈ C ( D ) .
f f f 在连通集D D D 上连续, 则f f f 在D D D 上最值存在.
二元函数导数
偏导数 :
f x ′ ( p 0 ) = ∂ f ∂ x ∣ p 0 = lim Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f y ′ ( p 0 ) = ∂ f ∂ y ∣ p 0 = lim Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \begin{aligned}
f'_x(p_0) &= \left.\frac{\partial f}{\partial x}\right\vert_{p_0} = \lim_{\Delta x \to 0} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} \\
f'_y(p_0) &= \left.\frac{\partial f}{\partial y}\right\vert_{p_0} = \lim_{\Delta y \to 0} \frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} \\
\end{aligned}
f x ′ ( p 0 ) f y ′ ( p 0 ) = ∂ x ∂ f ∣ ∣ ∣ ∣ p 0 = Δ x → 0 lim Δ x f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) = ∂ y ∂ f ∣ ∣ ∣ ∣ p 0 = Δ y → 0 lim Δ y f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 )
全微分 :
Δ f ( p 0 ) = f x ′ ( p 0 ) Δ x + f y ′ ( p 0 ) Δ y + o ( Δ x 2 + Δ y 2 ) ⏟ o ( ρ ) d f ( p 0 ) = f x ′ ( p 0 ) d x + f y ′ ( p 0 ) d y \begin{aligned}
\Delta f(p_0) &= f'_x(p_0)\Delta x + f'_y(p_0)\Delta y + \underbrace{o\left(\sqrt{\Delta x^2+\Delta y^2}\right)}_{o(\rho)} \\
\text{d}f(p_0) &= f'_x(p_0)\;\text{d}x + f'_y(p_0)\;\text{d}y \\
\end{aligned}
Δ f ( p 0 ) d f ( p 0 ) = f x ′ ( p 0 ) Δ x + f y ′ ( p 0 ) Δ y + o ( ρ ) o ( Δ x 2 + Δ y 2 ) = f x ′ ( p 0 ) d x + f y ′ ( p 0 ) d y
可微 ⇒ \Rightarrow ⇒ 连续, 偏导存在
偏导连续 ⇒ \Rightarrow ⇒ 可微
可微的充要条件 :
lim p → p 0 f ( x + Δ x , y + Δ y ) − f ( x , y ) − f x ′ ( p 0 ) Δ x − f y ′ ( p 0 ) Δ y Δ x 2 + Δ y 2 = 0 \lim_{p \to p_0} \frac{f(x+\Delta x,y+\Delta y)-f(x,y)-f'_x(p_0)\Delta x-f'_y(p_0)\Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} = 0
p → p 0 lim Δ x 2 + Δ y 2 f ( x + Δ x , y + Δ y ) − f ( x , y ) − f x ′ ( p 0 ) Δ x − f y ′ ( p 0 ) Δ y = 0
复合函数求导 :
若z = f ( x , y ) = f ( x ( t , s ) , y ( t , s ) ) z = f(x,y) = f(x(t,s),y(t,s)) z = f ( x , y ) = f ( x ( t , s ) , y ( t , s ) ) :
∂ z ∂ t = ∂ f ∂ x ∂ x ∂ t + ∂ f ∂ y ∂ y ∂ t ∂ z ∂ s = ∂ f ∂ x ∂ x ∂ s + ∂ f ∂ y ∂ y ∂ s \begin{aligned}
\frac{\partial z}{\partial t} &= \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t} \\
\frac{\partial z}{\partial s} &= \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s} \\
\end{aligned}
∂ t ∂ z ∂ s ∂ z = ∂ x ∂ f ∂ t ∂ x + ∂ y ∂ f ∂ t ∂ y = ∂ x ∂ f ∂ s ∂ x + ∂ y ∂ f ∂ s ∂ y
高阶偏导数 :
f x x ′ ′ ( p 0 ) = ∂ 2 f ∂ x 2 ∣ p 0 = lim Δ x → 0 f x ′ ( x 0 + Δ x , y 0 ) − f x ′ ( x 0 , y 0 ) Δ x f x y ′ ′ ( p 0 ) = ∂ 2 f ∂ y ∂ x ∣ p 0 = lim Δ y → 0 f x ′ ( x 0 , y 0 + Δ y ) − f x ′ ( x 0 , y 0 ) Δ y f y x ′ ′ ( p 0 ) = ∂ 2 f ∂ x ∂ y ∣ p 0 = lim Δ x → 0 f y ′ ( x 0 + Δ x , y 0 ) − f y ′ ( x 0 , y 0 ) Δ x f y y ′ ′ ( p 0 ) = ∂ 2 f ∂ y 2 ∣ p 0 = lim Δ y → 0 f y ′ ( x 0 , y 0 + Δ y ) − f y ′ ( x 0 , y 0 ) Δ y \begin{aligned}
f''_{xx}(p_0) &= \left.\frac{\partial^2 f}{\partial x^2}\right\vert_{p_0} = \lim_{\Delta x \to 0} \frac{f'_x(x_0+\Delta x,y_0)-f'_x(x_0,y_0)}{\Delta x} \\
f''_{xy}(p_0) &= \left.\frac{\partial^2 f}{\partial y \partial x}\right\vert_{p_0} = \lim_{\Delta y \to 0} \frac{f'_x(x_0,y_0+\Delta y)-f'_x(x_0,y_0)}{\Delta y} \\
f''_{yx}(p_0) &= \left.\frac{\partial^2 f}{\partial x \partial y}\right\vert_{p_0} = \lim_{\Delta x \to 0} \frac{f'_y(x_0+\Delta x,y_0)-f'_y(x_0,y_0)}{\Delta x} \\
f''_{yy}(p_0) &= \left.\frac{\partial^2 f}{\partial y^2}\right\vert_{p_0} = \lim_{\Delta y \to 0} \frac{f'_y(x_0,y_0+\Delta y)-f'_y(x_0,y_0)}{\Delta y} \\
\end{aligned}
f x x ′ ′ ( p 0 ) f x y ′ ′ ( p 0 ) f y x ′ ′ ( p 0 ) f y y ′ ′ ( p 0 ) = ∂ x 2 ∂ 2 f ∣ ∣ ∣ ∣ p 0 = Δ x → 0 lim Δ x f x ′ ( x 0 + Δ x , y 0 ) − f x ′ ( x 0 , y 0 ) = ∂ y ∂ x ∂ 2 f ∣ ∣ ∣ ∣ p 0 = Δ y → 0 lim Δ y f x ′ ( x 0 , y 0 + Δ y ) − f x ′ ( x 0 , y 0 ) = ∂ x ∂ y ∂ 2 f ∣ ∣ ∣ ∣ p 0 = Δ x → 0 lim Δ x f y ′ ( x 0 + Δ x , y 0 ) − f y ′ ( x 0 , y 0 ) = ∂ y 2 ∂ 2 f ∣ ∣ ∣ ∣ p 0 = Δ y → 0 lim Δ y f y ′ ( x 0 , y 0 + Δ y ) − f y ′ ( x 0 , y 0 )
若f x y ′ ′ , f y x ′ ′ f''_{xy},f''_{yx} f x y ′ ′ , f y x ′ ′ 在p 0 p_0 p 0 处连续, 则f x y ′ ′ ( p 0 ) = f y x ′ ′ ( p 0 ) f''_{xy}(p_0)=f''_{yx}(p_0) f x y ′ ′ ( p 0 ) = f y x ′ ′ ( p 0 ) .
方向导数 : 对于e ∈ R 2 , ∥ e ∥ = 1 e \in \mathbb R^2, \| e \| = 1 e ∈ R 2 , ∥ e ∥ = 1 , 可定义:
f e ′ ( p 0 ) = ∂ f ∂ e ∣ p 0 = lim t → 0 + f ( p 0 + t e ) − f ( p 0 ) t = d [ f ( p 0 + t e ) ] d t f'_e(p_0) = \left.\frac{\partial f}{\partial e}\right\vert_{p_0} = \lim_{t\to0^+} \frac{f(p_0+te)-f(p_0)}{t} = \frac{\text{d} [f(p_0+te)]}{\text{d} t}
f e ′ ( p 0 ) = ∂ e ∂ f ∣ ∣ ∣ ∣ p 0 = t → 0 + lim t f ( p 0 + t e ) − f ( p 0 ) = d t d [ f ( p 0 + t e ) ]
注意到上式中e e e 仅指代射线方向, 即∀ λ > 0 \forall \lambda \gt 0 ∀ λ > 0 :
∂ f ∂ ( λ e ) ∣ p 0 = ∂ f ∂ e ∣ p 0 \left.\frac{\partial f}{\partial(\lambda e)}\right\vert_{p_0} = \left.\frac{\partial f}{\partial e}\right\vert_{p_0}
∂ ( λ e ) ∂ f ∣ ∣ ∣ ∣ p 0 = ∂ e ∂ f ∣ ∣ ∣ ∣ p 0
可微 ⇒ \Rightarrow ⇒ 方向导数存在.
方向导数存在且同一点处反方向导数为正方向导数相反数 ⇒ \Rightarrow ⇒ 偏导数存在.
∂ f ∂ ( − e ) ∣ p 0 = − ∂ f ∂ e ∣ p 0 ∂ f ∂ i ⃗ ∣ p 0 = ∂ f ∂ x ∣ p 0 if ∂ f ∂ i ⃗ ∣ p 0 = − ∂ f ∂ ( − i ⃗ ) ∣ p 0 ∂ f ∂ j ⃗ ∣ p 0 = ∂ f ∂ y ∣ p 0 if ∂ f ∂ j ⃗ ∣ p 0 = − ∂ f ∂ ( − j ⃗ ) ∣ p 0 \begin{aligned}
\left.\frac{\partial f}{\partial(-e)}\right\vert_{p_0} &= - \left.\frac{\partial f}{\partial e}\right\vert_{p_0} \\
\left.\frac{\partial f}{\partial \vec i}\right\vert_{p_0} &= \left.\frac{\partial f}{\partial x}\right\vert_{p_0} \;\;\;\;\;\;\;\; \text{ if } \left.\frac{\partial f}{\partial \vec i}\right\vert_{p_0} = -\left.\frac{\partial f}{\partial(-\vec i)}\right\vert_{p_0} \\
\left.\frac{\partial f}{\partial \vec j}\right\vert_{p_0} &= \left.\frac{\partial f}{\partial y}\right\vert_{p_0} \;\;\;\;\;\;\;\; \text{ if } \left.\frac{\partial f}{\partial \vec j}\right\vert_{p_0} = -\left.\frac{\partial f}{\partial(-\vec j)}\right\vert_{p_0} \\
\end{aligned}
∂ ( − e ) ∂ f ∣ ∣ ∣ ∣ p 0 ∂ i ∂ f ∣ ∣ ∣ ∣ p 0 ∂ j ∂ f ∣ ∣ ∣ ∣ p 0 = − ∂ e ∂ f ∣ ∣ ∣ ∣ p 0 = ∂ x ∂ f ∣ ∣ ∣ ∣ p 0 if ∂ i ∂ f ∣ ∣ ∣ ∣ p 0 = − ∂ ( − i ) ∂ f ∣ ∣ ∣ ∣ ∣ p 0 = ∂ y ∂ f ∣ ∣ ∣ ∣ p 0 if ∂ j ∂ f ∣ ∣ ∣ ∣ p 0 = − ∂ ( − j ) ∂ f ∣ ∣ ∣ ∣ ∣ p 0
梯度 :
∇ f ( p 0 ) = grad f ( p 0 ) = ( f x ′ ( p 0 ) , f y ′ ( p 0 ) ) \nabla f(p_0) = \text{grad} f(p_0) = (f'_x(p_0),f'_y(p_0))
∇ f ( p 0 ) = grad f ( p 0 ) = ( f x ′ ( p 0 ) , f y ′ ( p 0 ) )
∂ f ∂ e ∣ p 0 = ∇ f ( p 0 ) ⋅ e = ∥ ∇ f ( p 0 ) ∥ cos ⟨ ∇ f ( p 0 ) , e ⟩ \left.\frac{\partial f}{\partial e}\right\vert_{p_0} = \nabla f(p_0) \cdot e = \| \nabla f(p_0) \| \cos \langle \nabla f(p_0), e \rangle
∂ e ∂ f ∣ ∣ ∣ ∣ p 0 = ∇ f ( p 0 ) ⋅ e = ∥ ∇ f ( p 0 ) ∥ cos ⟨ ∇ f ( p 0 ) , e ⟩
向量值函数与隐函数
向量值函数 : f : Ω → R m f:\Omega \to \mathbb R^m f : Ω → R m s.t.: Ω ⊆ R n , ∀ x ⃗ ∈ Ω , ∃ ! y ⃗ ∈ R m , y ⃗ = f ( x ⃗ ) \Omega \subseteq \mathbb R^n, \forall \vec x \in \Omega, \exists! \vec y \in \mathbb R^m, \vec y = f(\vec x) Ω ⊆ R n , ∀ x ∈ Ω , ∃ ! y ∈ R m , y = f ( x ) .
连续 : f ∈ C ( Ω ) ⇔ ∀ 1 ≤ i ≤ n , f i ∈ C ( Ω i ) f \in \mathscr C(\Omega) \Leftrightarrow \forall 1 \le i \le n, f_i \in \mathscr C(\Omega_i) f ∈ C ( Ω ) ⇔ ∀ 1 ≤ i ≤ n , f i ∈ C ( Ω i ) .
映射微分 :
Δ f ( x ⃗ ) = A Δ x ⃗ + o ( ∥ Δ x ⃗ ∥ ) ⏟ o ( ρ ) d f ( x ⃗ ) = A d x ⃗ \begin{aligned}
\Delta f(\vec x) &= A\vec{\Delta x} + \underbrace{o\left(\|\vec{\Delta x} \|\right)}_{o(\rho)} \\
\text{d}f(\vec x) &= A\text{d} \vec x \\
\end{aligned}
Δ f ( x ) d f ( x ) = A Δ x + o ( ρ ) o ( ∥ Δ x ∥ ) = A d x
其中A ∈ M m × n ( R ) A \in M_{m \times n}(\mathbb R) A ∈ M m × n ( R ) , 满足:
A i j = ∂ y i ∂ x j ∣ p 0 A_{ij} = \left.\frac{\partial y_i}{\partial x_j}\right\vert_{p_0}
A i j = ∂ x j ∂ y i ∣ ∣ ∣ ∣ p 0
称A A A 为f f f 的Jacobi矩阵, 记作J f ( x ⃗ 0 ) = ∂ ( y 1 , ⋯ , y m ) ∂ ( x 1 , ⋯ , x n ) ∣ x ⃗ 0 = A J f(\vec x_0) = \left.\frac{\partial (y_1,\cdots,y_m)}{\partial (x_1,\cdots,x_n)}\right\vert_{\vec x_0} = A J f ( x 0 ) = ∂ ( x 1 , ⋯ , x n ) ∂ ( y 1 , ⋯ , y m ) ∣ ∣ ∣ x 0 = A .
Φ ( x ⃗ 0 ) ( x ⃗ ) = J f ( x ⃗ 0 ) × x ⃗ \Phi(\vec x_0)(\vec x) = J f(\vec x_0) \times \vec x Φ ( x 0 ) ( x ) = J f ( x 0 ) × x 为f f f 在x ⃗ 0 \vec x_0 x 0 的微分映射.
d f ( x ⃗ ) = J f ( x ⃗ 0 ) × d x ⃗ \text{d} f(\vec x) = J f(\vec x_0) \times \text{d} \vec x d f ( x ) = J f ( x 0 ) × d x 为f f f 在x ⃗ 0 \vec x_0 x 0 的微分.
[ d y 1 d y 2 ⋯ d y m ] = ∂ ( y 1 , ⋯ , y m ) ∂ ( x 1 , ⋯ , x n ) × [ d x 1 d x 2 ⋯ d x n ] \begin{bmatrix}
\text{d}y_1 \\
\text{d}y_2 \\
\cdots \\
\text{d}y_m \\
\end{bmatrix} =
\frac{\partial (y_1,\cdots,y_m)}{\partial (x_1,\cdots,x_n)} \times
\begin{bmatrix}
\text{d}x_1 \\
\text{d}x_2 \\
\cdots \\
\text{d}x_n \\
\end{bmatrix}
⎣ ⎢ ⎢ ⎡ d y 1 d y 2 ⋯ d y m ⎦ ⎥ ⎥ ⎤ = ∂ ( x 1 , ⋯ , x n ) ∂ ( y 1 , ⋯ , y m ) × ⎣ ⎢ ⎢ ⎡ d x 1 d x 2 ⋯ d x n ⎦ ⎥ ⎥ ⎤
复合映射微分 :
若向量值函数f f f 在x ⃗ 0 \vec x_0 x 0 处可微, g g g 在u ⃗ 0 = f ( x ⃗ 0 ) \vec u_0 = f(\vec x_0) u 0 = f ( x 0 ) 处可微, Im ( f ) ⊆ D ( g ) \text{Im}(f) \subseteq D(g) Im ( f ) ⊆ D ( g ) . 则:
J ( g ∘ f ) ( x ⃗ 0 ) = J g ( u ⃗ 0 ) × J f ( x ⃗ 0 ) J(g \circ f)(\vec x_0) = J g(\vec u_0) \times J f(\vec x_0)
J ( g ∘ f ) ( x 0 ) = J g ( u 0 ) × J f ( x 0 )
逆映射微分 :
J ( f ∘ f − 1 ) = I n × n J f − 1 ( y ⃗ ) = ( J f ( x ⃗ ) ) − 1 \begin{aligned}
J (f \circ f^{-1}) &= I_{n \times n} \\
J f^{-1}(\vec y) &= \left( J f(\vec x) \right)^{-1} \\
\end{aligned}
J ( f ∘ f − 1 ) J f − 1 ( y ) = I n × n = ( J f ( x ) ) − 1
隐函数 : D ( F ) = W × E ⊆ R n × R m D(F) = W \times E \subseteq \mathbb R^n \times \mathbb R^m D ( F ) = W × E ⊆ R n × R m , ∀ x ⃗ ∈ W , ∃ ! y ∈ E \forall \vec x \in W, \exists! y \in E ∀ x ∈ W , ∃ ! y ∈ E s.t.: F ( x ⃗ , y ) = 0 F(\vec x,y) = 0 F ( x , y ) = 0 . 则F ( x ⃗ , y ) = 0 F(\vec x,y)=0 F ( x , y ) = 0 确定隐函数y = f ( x ⃗ ) y = f(\vec x) y = f ( x ) .
隐函数存在性 :
若F F F 在W W W 内有定义, 且:
F ∈ C ( q ) F \in \mathscr C^{(q)} F ∈ C ( q ) , q ≥ 1 q \ge 1 q ≥ 1 .
∃ p ⃗ 0 ∈ W × E , F ( p ⃗ 0 ) = 0 \exists \vec p_0 \in W \times E, F(\vec p_0) = 0 ∃ p 0 ∈ W × E , F ( p 0 ) = 0 .
F y ′ ( p ⃗ 0 ) ≠ 0 F'_y(\vec p_0) \ne 0 F y ′ ( p 0 ) = 0 .
则: ∃ I × J ⊆ W × E \exists I \times J \subseteq W \times E ∃ I × J ⊆ W × E s.t.: x ⃗ 0 ∈ I , y 0 ∈ J \vec x_0 \in I, y_0 \in J x 0 ∈ I , y 0 ∈ J (i.e.: p ⃗ 0 \vec p_0 p 0 的邻域):
∀ x ⃗ ∈ I \forall \vec x \in I ∀ x ∈ I , ∃ ! y = f ( x ⃗ ) ∈ J \exists ! y = f(\vec x) \in J ∃ ! y = f ( x ) ∈ J . (隐函数存在唯一性)
y 0 = f ( x ⃗ 0 ) y_0 = f(\vec x_0) y 0 = f ( x 0 ) . (初值条件)
f ∈ C ( q ) ( I ) f \in \mathscr C^{(q)}(I) f ∈ C ( q ) ( I ) . (隐函数连续性)
∀ x ⃗ ∈ I \forall \vec x \in I ∀ x ∈ I ,
f'_j(\vec x) = -\frac{F'_j(\vec p)}{F'_y(\vec p)}
$$ (隐函数导数)
若二元函数F ( x , y ) = 0 F(x,y)=0 F ( x , y ) = 0 确定隐函数f ( x ) f(x) f ( x ) , f − 1 = g f^{-1} = g f − 1 = g 存在 ⇔ \Leftrightarrow ⇔ F ( x , y ) = 0 F(x,y)=0 F ( x , y ) = 0 确定隐函数g ( y ) g(y) g ( y ) .
隐函数方程组 : ∀ 1 ≤ i ≤ m , F i ( x 1 , ⋯ , x n , y 1 , ⋯ , y m ) = 0 \forall 1 \le i \le m, F_i(x_1,\cdots,x_n,y_1,\cdots,y_m) = 0 ∀ 1 ≤ i ≤ m , F i ( x 1 , ⋯ , x n , y 1 , ⋯ , y m ) = 0 , 其中D ( F i ) = W x × W y D(F_i) = W_x \times W_y D ( F i ) = W x × W y .
隐函数方程组解存在性 :
若F F F 在W x W_x W x 内有定义, 且: ∀ 1 ≤ i ≤ m \forall 1 \le i \le m ∀ 1 ≤ i ≤ m ,
F ∈ C ( q ) F \in \mathscr C^{(q)} F ∈ C ( q ) , q ≥ 1 q \ge 1 q ≥ 1 .
∃ p 0 ∈ W x × W y , F i ( p ⃗ 0 ) = 0 \exists p_0 \in W_x \times W_y, F_i(\vec p_0) = 0 ∃ p 0 ∈ W x × W y , F i ( p 0 ) = 0 .
∂ ( F 1 , ⋯ , F m ) ∂ ( y 1 , ⋯ , y m ) ∣ p ⃗ 0 \left.\frac{\partial (F_1,\cdots,F_m)}{\partial (y_1,\cdots,y_m)}\right\vert_{\vec p_0} ∂ ( y 1 , ⋯ , y m ) ∂ ( F 1 , ⋯ , F m ) ∣ ∣ ∣ p 0 可逆.
则: ∃ p ⃗ 0 \exists \vec p_0 ∃ p 0 的邻域I x × I y I_x \times I_y I x × I y : ∀ 1 ≤ i ≤ m \forall 1 \le i \le m ∀ 1 ≤ i ≤ m ,
∀ x ⃗ ∈ I x , ∃ ! y ⃗ \forall \vec x \in I_x, \exists! \vec y ∀ x ∈ I x , ∃ ! y s.t.: F i ( x ⃗ , y ⃗ ) = 0 F_i(\vec x,\vec y) = 0 F i ( x , y ) = 0 . 可以相应定义定义y i = ( y ⃗ ) i = f i ( x ⃗ ) y_i = (\vec y)_i = f_i(\vec x) y i = ( y ) i = f i ( x ) .
( y ⃗ 0 ) i = f i ( x ⃗ 0 ) (\vec y_0)_i = f_i(\vec x_0) ( y 0 ) i = f i ( x 0 ) .
f i ∈ C ( q ) ( I x ) f_i \in \mathscr C^{(q)}(I_x) f i ∈ C ( q ) ( I x ) .
∀ x ⃗ ∈ I x \forall \vec x \in I_x ∀ x ∈ I x ,
∂ ( y 1 , ⋯ , y m ) ∂ ( x 1 , ⋯ , x n ) ∣ x ⃗ = − ( ∂ ( F 1 , ⋯ , F m ) ∂ ( y 1 , ⋯ , y m ) ∣ p ⃗ ) − 1 × ∂ ( F 1 , ⋯ , F m ) ∂ ( x 1 , ⋯ , x n ) ∣ x ⃗ \left.\frac{\partial(y_1,\cdots,y_m)}{\partial(x_1,\cdots,x_n)}\right\vert_{\vec x} = -\left( \left.\frac{\partial (F_1,\cdots,F_m)}{\partial (y_1,\cdots,y_m)}\right\vert_{\vec p} \right)^{-1} \times \left.\frac{\partial(F_1,\cdots,F_m)}{\partial(x_1,\cdots,x_n)}\right\vert_{\vec x}
∂ ( x 1 , ⋯ , x n ) ∂ ( y 1 , ⋯ , y m ) ∣ ∣ ∣ ∣ x = − ( ∂ ( y 1 , ⋯ , y m ) ∂ ( F 1 , ⋯ , F m ) ∣ ∣ ∣ ∣ p ) − 1 × ∂ ( x 1 , ⋯ , x n ) ∂ ( F 1 , ⋯ , F m ) ∣ ∣ ∣ ∣ x
空间曲线和曲面
空间曲线切向量 : p ⃗ = t τ ⃗ \vec p = t \vec \tau p = t τ , 其中切向量τ ⃗ = ( x t ′ , y t ′ , z t ′ ) ( p ⃗ 0 ) \vec \tau = (x'_t,y'_t,z'_t)(\vec p_0) τ = ( x t ′ , y t ′ , z t ′ ) ( p 0 ) . 若空间曲线处处有非零、连续的切向量, 则称空间曲线光滑.
空间曲面切向量与法向量 : 曲面S : F ( p ⃗ ) = 0 S:F(\vec p) = 0 S : F ( p ) = 0 在p ⃗ 0 \vec p_0 p 0 处可微, 且∇ F ( p ⃗ 0 ) ≠ 0 \nabla F(\vec p_0) \ne 0 ∇ F ( p 0 ) = 0 , F F F 在邻域内连续, 则:
∀ τ ⃗ , F ′ ( t 0 ) = n ⃗ ⋅ τ ⃗ = 0 \forall \vec \tau, F'(t_0) = \vec n \cdot \vec \tau = 0
∀ τ , F ′ ( t 0 ) = n ⋅ τ = 0
其中法向量n ⃗ = ∇ F ( p ⃗ 0 ) = ( F x ′ , F y ′ , F z ′ ) ( p ⃗ 0 ) \vec n = \nabla F(\vec p_0) = (F'_x,F'_y,F'_z)(\vec p_0) n = ∇ F ( p 0 ) = ( F x ′ , F y ′ , F z ′ ) ( p 0 ) , 切向量τ ⃗ = ( x t ′ , y t ′ , z t ′ ) ( p ⃗ 0 ) \vec \tau = (x'_t,y'_t,z'_t)(\vec p_0) τ = ( x t ′ , y t ′ , z t ′ ) ( p 0 ) 对于任意曲线l : x = x ( t ) , y = y ( t ) , z = z ( t ) l:x=x(t),y=y(t),z=z(t) l : x = x ( t ) , y = y ( t ) , z = z ( t ) s.t: p ⃗ 0 ∈ l ⊆ S \vec p_0 \in l \subseteq S p 0 ∈ l ⊆ S .
切向量求切线方程 :
x − x 0 τ x = y − y 0 τ y = z − z 0 τ z \frac{x-x_0}{\tau_x} = \frac{y-y_0}{\tau_y} = \frac{z-z_0}{\tau_z}
τ x x − x 0 = τ y y − y 0 = τ z z − z 0
法向量求法线方程 :
x − x 0 n x = y − y 0 n y = z − z 0 n z \frac{x-x_0}{n_x} = \frac{y-y_0}{n_y} = \frac{z-z_0}{n_z}
n x x − x 0 = n y y − y 0 = n z z − z 0
切向量求法平面方程 :
τ x ( x − x 0 ) + τ y ( y − y 0 ) + τ z ( z − z 0 ) = 0 \tau_x(x-x_0) + \tau_y(y-y_0) + \tau_z(z-z_0) = 0
τ x ( x − x 0 ) + τ y ( y − y 0 ) + τ z ( z − z 0 ) = 0
法向量求切平面方程 :
n x ( x − x 0 ) + n y ( y − y 0 ) + n z ( z − z 0 ) = 0 n_x(x-x_0) + n_y(y-y_0) + n_z(z-z_0) = 0
n x ( x − x 0 ) + n y ( y − y 0 ) + n z ( z − z 0 ) = 0
切向量求法向量(法向量求切向量类似) :
n ⃗ = τ ⃗ 1 × τ ⃗ 2 = ∣ i ⃗ j ⃗ k ⃗ τ 1 x τ 1 y τ 1 z τ 2 x τ 2 y τ 2 z ∣ = ( det ∂ ( y , z ) ∂ ( u , v ) , det ∂ ( z , x ) ∂ ( u , v ) , det ∂ ( x , y ) ∂ ( u , v ) ) \vec n = \vec \tau_1 \times \vec \tau_2 =
\left \vert
\begin{matrix}
\vec i & \vec j & \vec k \\
\tau_{1x} & \tau_{1y} & \tau_{1z} \\
\tau_{2x} & \tau_{2y} & \tau_{2z} \\
\end{matrix}
\right \vert
= \left(
\det \frac{\partial (y,z)}{\partial (u,v)},
\det \frac{\partial (z,x)}{\partial (u,v)},
\det \frac{\partial (x,y)}{\partial (u,v)}
\right)
n = τ 1 × τ 2 = ∣ ∣ ∣ ∣ ∣ ∣ i τ 1 x τ 2 x j τ 1 y τ 2 y k τ 1 z τ 2 z ∣ ∣ ∣ ∣ ∣ ∣ = ( det ∂ ( u , v ) ∂ ( y , z ) , det ∂ ( u , v ) ∂ ( z , x ) , det ∂ ( u , v ) ∂ ( x , y ) )
显函数法向量 : n ⃗ = ( f x ′ , f y ′ , − 1 ) ( p 0 ) \vec n = (f'_x,f'_y,-1)(p_0) n = ( f x ′ , f y ′ , − 1 ) ( p 0 ) .
二元函数泰勒展开与极值
高阶全微分 : 若f ∈ C ( n ) f \in \mathscr C^{(n)} f ∈ C ( n ) ,
d n f = ( d x ⋅ ∂ ∂ x + d y ⋅ ∂ ∂ y ) n f ( x , y ) = ∑ i = 0 n C n i ∂ n f ∂ x i ∂ y n − i ( x , y ) ⋅ d x i ⋅ d y n − i \text{d}^n f = \left( \text{d}x \cdot \frac{\partial}{\partial x} + \text{d}y \cdot \frac{\partial}{\partial y} \right)^nf(x,y) = \sum_{i=0}^n C_n^i \frac{\partial^n f}{\partial x^i \partial y^{n-i}}(x,y) \cdot \text{d}x^i \cdot \text{d}y^{n-i}
d n f = ( d x ⋅ ∂ x ∂ + d y ⋅ ∂ y ∂ ) n f ( x , y ) = i = 0 ∑ n C n i ∂ x i ∂ y n − i ∂ n f ( x , y ) ⋅ d x i ⋅ d y n − i
二元函数泰勒展开 : 若f ∈ C ( n ) f \in \mathscr C^{(n)} f ∈ C ( n ) ,
T f ( x , y ) = ∑ k = 0 n 1 k ! ( ( x − x 0 ) ⋅ ∂ ∂ x + ( y − y 0 ) ⋅ ∂ ∂ y ) k f ( x 0 , y 0 ) f ( x , y ) = T f ( x , y ) + R n \begin{aligned}
T_f(x,y) &= \sum_{k=0}^n \frac{1}{k!} \left( (x-x_0) \cdot \frac{\partial}{\partial x} + (y-y_0) \cdot \frac{\partial}{\partial y} \right)^kf(x_0,y_0) \\
f(x,y) &= T_f(x,y) + R_n \\
\end{aligned}
T f ( x , y ) f ( x , y ) = k = 0 ∑ n k ! 1 ( ( x − x 0 ) ⋅ ∂ x ∂ + ( y − y 0 ) ⋅ ∂ y ∂ ) k f ( x 0 , y 0 ) = T f ( x , y ) + R n
皮亚诺余项: f ∈ C ( n ) f \in \mathscr C^{(n)} f ∈ C ( n ) , R n = o ( ( x − x 0 ) 2 + ( y − y 0 ) 2 n ) R_n = o \left( \sqrt{(x-x_0)^2+(y-y_0)^2}^n \right) R n = o ( ( x − x 0 ) 2 + ( y − y 0 ) 2 n ) .
拉格朗日余项: f ∈ C ( n + 1 ) f \in \mathscr C^{(n+1)} f ∈ C ( n + 1 ) , R n = 1 ( n + 1 ) ! ( Δ x ⋅ ∂ ∂ x + Δ y ⋅ ∂ ∂ y ) n + 1 f ( x 0 + θ Δ x , y 0 + θ Δ y ) R_n = \frac{1}{(n+1)!}\left( \Delta x \cdot \frac{\partial}{\partial x} + \Delta y \cdot \frac{\partial}{\partial y} \right)^{n+1}f(x_0+\theta \Delta x,y_0+\theta \Delta y) R n = ( n + 1 ) ! 1 ( Δ x ⋅ ∂ x ∂ + Δ y ⋅ ∂ y ∂ ) n + 1 f ( x 0 + θ Δ x , y 0 + θ Δ y ) , θ ∈ [ 0 , 1 ] \theta \in [0,1] θ ∈ [ 0 , 1 ] .
e.g.: n = 2 n=2 n = 2
f ( x , y ) = f ( x 0 , y 0 ) + ( x − x 0 ) f x ′ ( x 0 , y 0 ) + ( y − y 0 ) f y ′ ( x 0 , y 0 ) + 1 2 ( x − x 0 ) 2 f x x ′ ′ ( x 0 , y 0 ) + ( x − x 0 ) ( y − y 0 ) f x y ′ ′ ( x 0 , y 0 ) + 1 2 ( y − y 0 ) 2 f y y ′ ′ ( x 0 , y 0 ) + R 2 \begin{aligned}
f(x,y) &= f(x_0,y_0) \\
&+ (x-x_0)f'_x(x_0,y_0) + (y-y_0)f'_y(x_0,y_0) \\
&+ \frac{1}{2}(x-x_0)^2f''_{xx}(x_0,y_0) + (x-x_0)(y-y_0)f''_{xy}(x_0,y_0) + \frac{1}{2}(y-y_0)^2f''_{yy}(x_0,y_0) \\
&+ R_2
\end{aligned}
f ( x , y ) = f ( x 0 , y 0 ) + ( x − x 0 ) f x ′ ( x 0 , y 0 ) + ( y − y 0 ) f y ′ ( x 0 , y 0 ) + 2 1 ( x − x 0 ) 2 f x x ′ ′ ( x 0 , y 0 ) + ( x − x 0 ) ( y − y 0 ) f x y ′ ′ ( x 0 , y 0 ) + 2 1 ( y − y 0 ) 2 f y y ′ ′ ( x 0 , y 0 ) + R 2
二元函数微分中值定理 : f ∈ C f \in \mathscr C f ∈ C , θ ∈ [ 0 , 1 ] \theta \in [0,1] θ ∈ [ 0 , 1 ] ,
f ( x , y ) − f ( x 0 , y 0 ) = ( Δ x f x ′ + Δ y f y ′ ) ( x 0 + θ Δ x , y 0 + θ Δ y ) f(x,y)-f(x_0,y_0) = \Big(\Delta xf'_x+\Delta yf'_y\Big)(x_0+\theta\Delta x,y_0+\theta\Delta y)
f ( x , y ) − f ( x 0 , y 0 ) = ( Δ x f x ′ + Δ y f y ′ ) ( x 0 + θ Δ x , y 0 + θ Δ y )
二元函数极值 : B ( p 0 , δ ) ⊆ D ( f ) B(p_0,\delta) \subseteq D(f) B ( p 0 , δ ) ⊆ D ( f ) , 若∀ p ∈ B ( p 0 , δ ) , f ( p ) ≤ f ( p 0 ) \forall p \in B(p_0,\delta), f(p) \le f(p_0) ∀ p ∈ B ( p 0 , δ ) , f ( p ) ≤ f ( p 0 ) , 则p 0 p_0 p 0 为极大值点, f ( p 0 ) f(p_0) f ( p 0 ) 为极大值. 极小值点和极小值同理.
极值点 ⇒ \Rightarrow ⇒ 内点.
极值点, 偏导存在 ⇒ \Rightarrow ⇒ 驻点(临界点).
p 0 p_0 p 0 为f f f 驻点, f ∈ C ( 2 ) ( B ( p 0 , δ 0 ) ) f \in \mathscr C^{(2)}(B(p_0,\delta_0)) f ∈ C ( 2 ) ( B ( p 0 , δ 0 ) ) :
f x x ′ ′ f y y ′ ′ − f x y ′ ′ 2 > 0 f''_{xx}f''_{yy} - {f''_{xy}}^2 \gt 0 f x x ′ ′ f y y ′ ′ − f x y ′ ′ 2 > 0 , p 0 p_0 p 0 为极值点
f x x ′ ′ > 0 , f y y ′ ′ > 0 f''_{xx} \gt 0, f''_{yy} \gt 0 f x x ′ ′ > 0 , f y y ′ ′ > 0 , p 0 p_0 p 0 为极小值点.
f x x ′ ′ < 0 , f y y ′ ′ < 0 f''_{xx} \lt 0, f''_{yy} \lt 0 f x x ′ ′ < 0 , f y y ′ ′ < 0 , p 0 p_0 p 0 为极大值点.
f x x ′ ′ f y y ′ ′ − f x y ′ ′ 2 < 0 f''_{xx}f''_{yy} - {f''_{xy}}^2 \lt 0 f x x ′ ′ f y y ′ ′ − f x y ′ ′ 2 < 0 , p 0 p_0 p 0 不为极值点
f x x ′ ′ f y y ′ ′ − f x y ′ ′ 2 = 0 f''_{xx}f''_{yy} - {f''_{xy}}^2 = 0 f x x ′ ′ f y y ′ ′ − f x y ′ ′ 2 = 0 , 无法确定
若∃ 0 < δ < δ 0 , ∀ p ∈ B ( p 0 , δ ) \exists 0 \lt \delta \lt \delta_0, \forall p \in B(p_0,\delta) ∃ 0 < δ < δ 0 , ∀ p ∈ B ( p 0 , δ ) , f x x ′ ′ f y y ′ ′ − f x y ′ ′ 2 ≥ 0 f''_{xx}f''_{yy} - {f''_{xy}}^2 \ge 0 f x x ′ ′ f y y ′ ′ − f x y ′ ′ 2 ≥ 0 , 则为极值点, 按照第一条方式判断.
一般地, 对于n n n 原函数, 判断Hessian矩阵H f ( p 0 ) H_f(p_0) H f ( p 0 ) :
[ f x 1 x 1 ′ ′ f x 1 x 2 ′ ′ f x 1 x 3 ′ ′ ⋯ f x 1 x n ′ ′ f x 2 x 1 ′ ′ f x 2 x 2 ′ ′ f x 2 x 3 ′ ′ ⋯ f x 2 x n ′ ′ f x 3 x 1 ′ ′ f x 3 x 2 ′ ′ f x 3 x 3 ′ ′ ⋯ f x 3 x n ′ ′ ⋮ ⋮ ⋮ ⋱ ⋮ f x n x 1 ′ ′ f x n x 2 ′ ′ f x n x 3 ′ ′ ⋯ f x n x n ′ ′ ] \begin{bmatrix}
f''_{x_1x_1} & f''_{x_1x_2} & f''_{x_1x_3} & \cdots & f''_{x_1x_n} \\
f''_{x_2x_1} & f''_{x_2x_2} & f''_{x_2x_3} & \cdots & f''_{x_2x_n} \\
f''_{x_3x_1} & f''_{x_3x_2} & f''_{x_3x_3} & \cdots & f''_{x_3x_n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
f''_{x_nx_1} & f''_{x_nx_2} & f''_{x_nx_3} & \cdots & f''_{x_nx_n} \\
\end{bmatrix}
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ f x 1 x 1 ′ ′ f x 2 x 1 ′ ′ f x 3 x 1 ′ ′ ⋮ f x n x 1 ′ ′ f x 1 x 2 ′ ′ f x 2 x 2 ′ ′ f x 3 x 2 ′ ′ ⋮ f x n x 2 ′ ′ f x 1 x 3 ′ ′ f x 2 x 3 ′ ′ f x 3 x 3 ′ ′ ⋮ f x n x 3 ′ ′ ⋯ ⋯ ⋯ ⋱ ⋯ f x 1 x n ′ ′ f x 2 x n ′ ′ f x 3 x n ′ ′ ⋮ f x n x n ′ ′ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
若正定或在邻域内连续半正定, 则为极小值点; 若负定或在邻域内连续半负定, 则为极大值点.
最小二乘法求回归直线 :
[ k b ] = [ ∑ i = 1 n x i 2 ∑ i = 1 n x i ∑ i = 1 n x i n ] − 1 [ ∑ i = 1 n x i y i ∑ i = 1 n y i ] = 1 Var [ x ] [ 1 − E [ x ] − E [ x ] E [ x 2 ] ] [ ∑ i = 1 n x i y i ∑ i = 1 n y i ] \begin{bmatrix}
k \\
b \\
\end{bmatrix} =
\begin{bmatrix}
\sum_{i=1}^n x_i^2 & \sum_{i=1}^n x_i \\
\sum_{i=1}^n x_i & n \\
\end{bmatrix}^{-1}
\begin{bmatrix}
\sum_{i=1}^n x_iy_i \\
\sum_{i=1}^n y_i \\
\end{bmatrix} =
\frac{1}{\text{Var}[x]}
\begin{bmatrix}
1 & -\mathbb E[x] \\
-\mathbb E[x] & \mathbb E[x^2] \\
\end{bmatrix}
\begin{bmatrix}
\sum_{i=1}^n x_iy_i \\
\sum_{i=1}^n y_i \\
\end{bmatrix}
[ k b ] = [ ∑ i = 1 n x i 2 ∑ i = 1 n x i ∑ i = 1 n x i n ] − 1 [ ∑ i = 1 n x i y i ∑ i = 1 n y i ] = Var [ x ] 1 [ 1 − E [ x ] − E [ x ] E [ x 2 ] ] [ ∑ i = 1 n x i y i ∑ i = 1 n y i ]
拉格朗日乘子法求条件极值 : 求f ( x , y ) f(x,y) f ( x , y ) 在φ ( x , y ) = 0 \varphi(x,y)=0 φ ( x , y ) = 0 条件下的极值, 可构造拉格朗日函数并求解其驻点:
L ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) L(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y)
L ( x , y , λ ) = f ( x , y ) + λ φ ( x , y )
含参定积分
一致连续 : ∀ ε > 0 , ∃ δ > 0 , ∀ p 1 , p 2 ∈ Ω , ∥ p 1 − p 2 ∥ < δ \forall \varepsilon \gt 0, \exists \delta \gt 0, \forall p_1,p_2 \in \Omega, \| p_1-p_2 \| \lt \delta ∀ ε > 0 , ∃ δ > 0 , ∀ p 1 , p 2 ∈ Ω , ∥ p 1 − p 2 ∥ < δ , 都有∣ f ( p 1 ) − f ( p 2 ) ∣ < ε \vert f(p_1)-f(p_2) \vert \lt \varepsilon ∣ f ( p 1 ) − f ( p 2 ) ∣ < ε , 则f f f 在Ω \Omega Ω 上一致连续.
有界闭集上连续则一致连续.
含参定积分 : I I I 为任意区间, D = [ a , b ] × I ⊆ D ( f ) D = [a,b] \times I \subseteq D(f) D = [ a , b ] × I ⊆ D ( f ) , 若∀ u ∈ I \forall u \in I ∀ u ∈ I , φ ( u ) = ∫ a b f ( x , u ) d x \varphi(u) = \int_a^b f(x,u)\;\text{d}x φ ( u ) = ∫ a b f ( x , u ) d x 存在, 则称其为f f f 含参u u u 的定积分.
连续性 : f ∈ C ( D ) f \in \mathscr C(D) f ∈ C ( D ) ⇒ \Rightarrow ⇒ φ ∈ C ( I ) \varphi \in \mathscr C(I) φ ∈ C ( I ) , 即:
lim u → u 0 φ ( u ) = lim u → u 0 ∫ a b f ( x , u ) d x = ∫ a b lim u → u 0 f ( x , u ) d x = φ ( u 0 ) \lim_{u\to u_0}\varphi(u) = \lim_{u\to u_0} \int_a^b f(x,u) \;\text{d}x = \int_a^b \lim_{u\to u_0} f(x,u) \;\text{d}x = \varphi(u_0)
u → u 0 lim φ ( u ) = u → u 0 lim ∫ a b f ( x , u ) d x = ∫ a b u → u 0 lim f ( x , u ) d x = φ ( u 0 )
可导性 : f u ′ ∈ C ( D ) f'_u \in \mathscr C(D) f u ′ ∈ C ( D ) ⇒ \Rightarrow ⇒ φ ′ \varphi' φ ′ 存在且:
φ ′ ( u ) = ∫ a b f u ′ ( x , u ) d x \varphi'(u) = \int_a^b f'_u(x,u) \;\text{d}x
φ ′ ( u ) = ∫ a b f u ′ ( x , u ) d x
可积性 : f ∈ C ( D ) f \in \mathscr C(D) f ∈ C ( D ) ⇒ \Rightarrow ⇒ φ ∈ R ( I ) \varphi \in \mathscr R(I) φ ∈ R ( I ) 且:
∫ α β φ ( u ) d u = ∫ α β ∫ a b f ( x , u ) d x d u = ∫ a b ∫ α β f ( x , u ) d u d x \int_\alpha^\beta\varphi(u)\;\text{d}u = \int_\alpha^\beta \int_a^b f(x,u) \;\text{d}x \;\text{d}u = \int_a^b \int_\alpha^\beta f(x,u) \;\text{d}u \;\text{d}x
∫ α β φ ( u ) d u = ∫ α β ∫ a b f ( x , u ) d x d u = ∫ a b ∫ α β f ( x , u ) d u d x
变限积分 : f u ′ ∈ C ( D ) f'_u \in \mathscr C(D) f u ′ ∈ C ( D ) , a ( u ) , b ( u ) ∈ C [ a , b ] a(u),b(u) \in \mathscr C[a,b] a ( u ) , b ( u ) ∈ C [ a , b ] 在[ α , β ] [\alpha,\beta] [ α , β ] 上可导 ⇒ \Rightarrow ⇒ φ ′ \varphi' φ ′ 在[ α , β ] [\alpha,\beta] [ α , β ] 上存在且:
φ ′ ( u ) = ∫ a ( u ) b ( u ) f u ′ ( x , u ) d x + b ′ ( u ) ⋅ f ( b ( u ) , u ) − a ′ ( u ) ⋅ f ( a ( u ) , u ) \varphi'(u) = \int_{a(u)}^{b(u)} f'_u(x,u) \;\text{d}x + b'(u) \cdot f(b(u),u) - a'(u) \cdot f(a(u),u)
φ ′ ( u ) = ∫ a ( u ) b ( u ) f u ′ ( x , u ) d x + b ′ ( u ) ⋅ f ( b ( u ) , u ) − a ′ ( u ) ⋅ f ( a ( u ) , u )
含参广义积分 : I I I 为任意区间, D = [ a , + ∞ ) × I ⊆ D ( f ) D = [a,+\infty) \times I \subseteq D(f) D = [ a , + ∞ ) × I ⊆ D ( f ) , 若∀ u ∈ I \forall u \in I ∀ u ∈ I , φ ( u ) = ∫ a + ∞ f ( x , u ) d x \varphi(u) = \int_a^{+\infty} f(x,u)\;\text{d}x φ ( u ) = ∫ a + ∞ f ( x , u ) d x 存在, 则称其为f f f 含参u u u 的无穷积分.
一致收敛 : ∀ ε > 0 , ∃ A 0 > a , ∀ A > A 0 , u ∈ I \forall \varepsilon \gt 0, \exists A_0 \gt a, \forall A \gt A_0, u \in I ∀ ε > 0 , ∃ A 0 > a , ∀ A > A 0 , u ∈ I , 都有∣ ∫ A + ∞ f ( x , u ) d x ∣ < ε \vert \int_A^{+\infty}f(x,u)\;\text{d}x \vert \lt \varepsilon ∣ ∫ A + ∞ f ( x , u ) d x ∣ < ε , 则∫ a + ∞ f ( x , u ) d x \int_a^{+\infty}f(x,u)\;\text{d}x ∫ a + ∞ f ( x , u ) d x 在I I I 上一致收敛.
一致收敛Cauchy原理 :
∫ a + ∞ f ( x , u ) d x \int_a^{+\infty}f(x,u)\;\text{d}x ∫ a + ∞ f ( x , u ) d x 在I I I 上一致收敛 ⇔ \Leftrightarrow ⇔ ∀ ε > 0 , ∃ A 0 > a , ∀ A 1 , A 2 > A 0 , u ∈ I \forall \varepsilon \gt 0, \exists A_0 \gt a, \forall A_1,A_2 \gt A_0, u \in I ∀ ε > 0 , ∃ A 0 > a , ∀ A 1 , A 2 > A 0 , u ∈ I , 都有∣ ∫ A 1 A 2 f ( x ) d x ∣ < ε \vert \int_{A_1}^{A_2} f(x)\;\text{d}x \vert \lt \varepsilon ∣ ∫ A 1 A 2 f ( x ) d x ∣ < ε .
Weierstrass判别法 :
D = [ a , + ∞ ) × I ⊆ D ( f ) D = [a,+\infty) \times I \subseteq D(f) D = [ a , + ∞ ) × I ⊆ D ( f ) , f ∈ C [ a , + ∞ ) f \in \mathscr C[a,+\infty) f ∈ C [ a , + ∞ ) . 若∃ F ∈ C [ a , + ∞ ) \exists F \in \mathscr C[a,+\infty) ∃ F ∈ C [ a , + ∞ ) s.t: ∀ ( x , u ) ∈ D , f ( x ) ≤ F ( x ) \forall (x,u) \in D, f(x) \le F(x) ∀ ( x , u ) ∈ D , f ( x ) ≤ F ( x ) 且∫ a + ∞ F ( x ) d x \int_a^{+\infty} F(x)\;\text{d}x ∫ a + ∞ F ( x ) d x 收敛, 则∫ a + ∞ f ( x , u ) d x \int_a^{+\infty} f(x,u)\;\text{d}x ∫ a + ∞ f ( x , u ) d x 在I I I 上一致收敛.
积分第二中值定理 :
f , g ∈ C ( [ a , b ] × I ) , g x ′ ∈ C ( [ a , b ] × I ) f,g \in \mathscr C([a,b] \times I), g'_x \in \mathscr C([a,b] \times I) f , g ∈ C ( [ a , b ] × I ) , g x ′ ∈ C ( [ a , b ] × I ) , 若g g g 关于x x x 单调, 则∃ ξ ∈ ( a , b ) \exists \xi \in (a,b) ∃ ξ ∈ ( a , b ) s.t.:
∫ a b f ( x , u ) g ( x , u ) d x = g ( a , u ) ∫ a ξ f ( x , u ) d x + g ( b , u ) ∫ ξ b f ( x , u ) d x \int_a^b f(x,u)g(x,u) \;\text{d}x = g(a,u)\int_a^\xi f(x,u) \;\text{d}x + g(b,u)\int_\xi^b f(x,u) \;\text{d}x
∫ a b f ( x , u ) g ( x , u ) d x = g ( a , u ) ∫ a ξ f ( x , u ) d x + g ( b , u ) ∫ ξ b f ( x , u ) d x
Dirichlet判别法 :
f , g ∈ C ( [ a , b ] × I ) f,g \in \mathscr C([a,b] \times I) f , g ∈ C ( [ a , b ] × I ) , 若:
∫ a + ∞ f ( x , u ) d x \int_a^{+\infty} f(x,u)\;\text{d}x ∫ a + ∞ f ( x , u ) d x 关于u ∈ I u \in I u ∈ I 一致有界.
g g g 关于x x x 单调且关于u ∈ I u \in I u ∈ I 一致趋于0 0 0 .
则∫ a b f ( x , u ) g ( x , u ) d x \int_a^b f(x,u)g(x,u) \;\text{d}x ∫ a b f ( x , u ) g ( x , u ) d x 在I I I 上一致收敛.
Abel判别法 :
f , g ∈ C ( [ a , b ] × I ) f,g \in \mathscr C([a,b] \times I) f , g ∈ C ( [ a , b ] × I ) , 若:
∫ a + ∞ f ( x , u ) d x \int_a^{+\infty} f(x,u)\;\text{d}x ∫ a + ∞ f ( x , u ) d x 关于u ∈ I u \in I u ∈ I 一致收敛.
g g g 关于x x x 单调且关于u ∈ I u \in I u ∈ I 一致有界.
则∫ a b f ( x , u ) g ( x , u ) d x \int_a^b f(x,u)g(x,u) \;\text{d}x ∫ a b f ( x , u ) g ( x , u ) d x 在I I I 上一致收敛.
局部一致收敛 : ∀ u 0 ∈ I , δ > 0 \forall u_0 \in I, \delta \gt 0 ∀ u 0 ∈ I , δ > 0 , 若都有∫ a + ∞ f ( x , u ) d x \int_a^{+\infty} f(x,u)\;\text{d}x ∫ a + ∞ f ( x , u ) d x 在( u 0 − δ , u 0 + δ ) ⋂ I (u_0-\delta,u_0+\delta) \bigcap I ( u 0 − δ , u 0 + δ ) ⋂ I 上一致收敛, 则∫ a + ∞ f ( x , u ) d x \int_a^{+\infty} f(x,u)\;\text{d}x ∫ a + ∞ f ( x , u ) d x 在I I I 上局部一致收敛.
连续性 : f ∈ C ( D ) f \in \mathscr C(D) f ∈ C ( D ) , φ ( u ) \varphi(u) φ ( u ) 在I I I 上局部一致收敛 ⇒ \Rightarrow ⇒ φ ∈ C ( I ) \varphi \in \mathscr C(I) φ ∈ C ( I ) , 即:
lim u → u 0 φ ( u ) = lim u → u 0 ∫ a + ∞ f ( x , u ) d x = ∫ a + ∞ lim u → u 0 f ( x , u ) d x = φ ( u 0 ) \lim_{u\to u_0}\varphi(u) = \lim_{u\to u_0} \int_a^{+\infty} f(x,u) \;\text{d}x = \int_a^{+\infty} \lim_{u\to u_0} f(x,u) \;\text{d}x = \varphi(u_0)
u → u 0 lim φ ( u ) = u → u 0 lim ∫ a + ∞ f ( x , u ) d x = ∫ a + ∞ u → u 0 lim f ( x , u ) d x = φ ( u 0 )
可导性 : f u ′ ∈ C ( D ) f'_u \in \mathscr C(D) f u ′ ∈ C ( D ) , φ ( u ) \varphi(u) φ ( u ) 在I I I 上一致收敛, ∫ a + ∞ f u ′ ( x , u ) d x \int_a^{+\infty} f'_u(x,u) \;\text{d}x ∫ a + ∞ f u ′ ( x , u ) d x 在I I I 上局部一致收敛 ⇒ \Rightarrow ⇒ φ ′ \varphi' φ ′ 存在且:
φ ′ ( u ) = ∫ a + ∞ f u ′ ( x , u ) d x \varphi'(u) = \int_a^{+\infty} f'_u(x,u) \;\text{d}x
φ ′ ( u ) = ∫ a + ∞ f u ′ ( x , u ) d x
可积性 : f ∈ C ( D ) f \in \mathscr C(D) f ∈ C ( D ) , φ ( u ) \varphi(u) φ ( u ) 在I I I 上一致收敛 ⇒ \Rightarrow ⇒ φ ∈ R ( I ) \varphi \in \mathscr R(I) φ ∈ R ( I ) 且:
∫ α β φ ( u ) d u = ∫ α β ∫ a + ∞ f ( x , u ) d x d u = ∫ a + ∞ ∫ α β f ( x , u ) d u d x \int_\alpha^\beta\varphi(u)\;\text{d}u = \int_\alpha^\beta \int_a^{+\infty} f(x,u) \;\text{d}x \;\text{d}u = \int_a^{+\infty} \int_\alpha^\beta f(x,u) \;\text{d}u \;\text{d}x
∫ α β φ ( u ) d u = ∫ α β ∫ a + ∞ f ( x , u ) d x d u = ∫ a + ∞ ∫ α β f ( x , u ) d u d x
Gamma函数 : Γ ( α ) ∈ C ( ∞ ) ( 0 , + ∞ ) \Gamma(\alpha) \in \mathscr C^{(\infty)}(0,+\infty) Γ ( α ) ∈ C ( ∞ ) ( 0 , + ∞ ) ,
Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x \Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1}e^{-x} \;\text{d}x
Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x
Γ ( n ) ( α ) = ∫ 0 + ∞ x α − 1 e − x ln n x d x \Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha-1}e^{-x} \ln^n x \;\text{d}x
Γ ( n ) ( α ) = ∫ 0 + ∞ x α − 1 e − x ln n x d x
Γ ( x + 1 ) = x Γ ( x ) \Gamma(x+1) = x\Gamma(x)
Γ ( x + 1 ) = x Γ ( x )
Γ ( n + 1 ) = n Γ ( n ) = n ! ≈ 2 π n ( n e ) n \Gamma(n+1) = n\Gamma(n) = n! \approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n
Γ ( n + 1 ) = n Γ ( n ) = n ! ≈ 2 π n ( e n ) n
Γ ( α ) Γ ( 1 − α ) = π sin ( α π ) \Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin(\alpha\pi)}
Γ ( α ) Γ ( 1 − α ) = sin ( α π ) π
Γ ( 1 2 ) = ∫ 0 + ∞ 1 x e x d x = π \Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{1}{\sqrt x e^x} \;\text{d}x = \sqrt \pi
Γ ( 2 1 ) = ∫ 0 + ∞ x e x 1 d x = π
Beta函数 : B ( p , q ) ∈ C ( ( 0 , + ∞ ) × ( 0 , + ∞ ) ) \Beta(p,q) \in \mathscr C((0,+\infty)\times(0,+\infty)) B ( p , q ) ∈ C ( ( 0 , + ∞ ) × ( 0 , + ∞ ) )
B ( p , q ) = ∫ 0 1 x p − 1 ( 1 − x ) q − 1 d x \Beta(p,q) = \int_0^1 x^{p-1}(1-x)^{q-1} \;\text{d}x
B ( p , q ) = ∫ 0 1 x p − 1 ( 1 − x ) q − 1 d x
B ( p , q ) = B ( q , p ) \Beta(p,q) = \Beta(q,p)
B ( p , q ) = B ( q , p )
B ( p + 1 , q ) = p p + q B ( p , q ) \Beta(p+1,q) = \frac{p}{p+q}\Beta(p,q)
B ( p + 1 , q ) = p + q p B ( p , q )
B ( p + 1 , q + 1 ) = p q ( p + q ) ( p + q + 1 ) B ( p , q ) \Beta(p+1,q+1) = \frac{pq}{(p+q)(p+q+1)}\Beta(p,q)
B ( p + 1 , q + 1 ) = ( p + q ) ( p + q + 1 ) p q B ( p , q )
B ( p , q ) = Γ ( p ) Γ ( q ) Γ ( p + q ) = 1 q C p + q − 1 p − 1 \Beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} = \frac{1}{q C_{p+q-1}^{p-1}}
B ( p , q ) = Γ ( p + q ) Γ ( p ) Γ ( q ) = q C p + q − 1 p − 1 1
多重积分
二重积分 : D ⊆ R 2 D \subseteq R^2 D ⊆ R 2 , T T T 是D D D 的一个分割, ∣ T ∣ = max 1 ≤ i ≤ n { diam ( Δ D i ) } \vert T \vert = \max_{1 \le i \le n} \lbrace \text{diam}(\Delta D_i) \rbrace ∣ T ∣ = max 1 ≤ i ≤ n { diam ( Δ D i ) } , 其中Δ D i \Delta D_i Δ D i 面积为S ( Δ D i ) = Δ a i S(\Delta D_i) = \Delta a_i S ( Δ D i ) = Δ a i , ( x i , y i ) ∈ Δ D i (x_i,y_i) \in \Delta D_i ( x i , y i ) ∈ Δ D i , 则:
V = lim ∣ T ∣ → 0 ∑ i = 1 n f ( x i , y i ) ⋅ Δ a i = ∬ D f ( x , y ) d S V = \lim_{\vert T \vert\to 0} \sum_{i=1}^n f(x_i,y_i) \cdot \Delta a_i = \iint_D f(x,y) \;\text{d}S
V = ∣ T ∣ → 0 lim i = 1 ∑ n f ( x i , y i ) ⋅ Δ a i = ∬ D f ( x , y ) d S
若该极限值存在且对于不同的T T T 一致, 则f f f 在D D D 上可积, f ∈ R ( D ) f \in \mathscr R(D) f ∈ R ( D ) .
∬ D 1 d a = S ( D ) \iint_D 1 \;\text{d}a = S(D) ∬ D 1 d a = S ( D ) .
f ∈ R ( D ) f \in \mathscr R(D) f ∈ R ( D ) ⇒ \Rightarrow ⇒ f f f 在D D D 上有界.
f ∈ R ( D ) f \in \mathscr R(D) f ∈ R ( D ) ⇔ \Leftrightarrow ⇔ 达布上和=达布下和 ⇔ \Leftrightarrow ⇔ 振幅刻画lim ∣ T ∣ → 0 ∑ i = 1 n ω i ⋅ Δ a i \lim_{\vert T \vert\to 0} \sum_{i=1}^n \omega_i \cdot \Delta a_i lim ∣ T ∣ → 0 ∑ i = 1 n ω i ⋅ Δ a i .
D D D 为有界闭区域(或间断点集零面积且有界), 则f ∈ C ( D ) f \in \mathscr C(D) f ∈ C ( D ) ⇒ \Rightarrow ⇒ f ∈ R ( D ) f \in \mathscr R(D) f ∈ R ( D ) .
若D = ⋃ i = 1 m D i D = \bigcup_{i=1}^m D_i D = ⋃ i = 1 m D i , ∀ i ≠ j , ( D i ) 0 ⋂ ( D j ) 0 = ∅ \forall i \ne j, (D_i)_0 \bigcap (D_j)_0 = \varnothing ∀ i = j , ( D i ) 0 ⋂ ( D j ) 0 = ∅ , 则:
∬ D f d S = ∑ i = 1 m ∬ D i f d S \iint_D f \;\text{d}S = \sum_{i=1}^m \iint_{D_i} f \;\text{d}S
∬ D f d S = i = 1 ∑ m ∬ D i f d S
且f ∈ R ( D ) f \in \mathscr R(D) f ∈ R ( D ) ⇔ \Leftrightarrow ⇔ ∀ i , f ∈ R ( D i ) \forall i, f \in \mathscr R(D_i) ∀ i , f ∈ R ( D i ) .
f ≥ g f \ge g f ≥ g ⇒ \Rightarrow ⇒ ∬ D f d S ≥ ∬ D g d S \iint_D f \;\text{d}S \ge \iint_D g \;\text{d}S ∬ D f d S ≥ ∬ D g d S .
∣ ∬ D f d S ∣ ≤ ∬ D ∣ f ∣ d S \left\vert \iint_D f \;\text{d}S \right\vert \le \iint_D \vert f \vert \;\text{d}S ∣ ∣ ∬ D f d S ∣ ∣ ≤ ∬ D ∣ f ∣ d S .
二重积分中值定理 : f ∈ C ( D ) , g ∈ R ( D ) f \in \mathscr C(D), g \in \mathscr R(D) f ∈ C ( D ) , g ∈ R ( D ) , g g g 在D D D 上不变号, 则∃ ( ξ , η ) ∈ D \exists (\xi,\eta) \in D ∃ ( ξ , η ) ∈ D s.t.:
∬ D f g d S = f ( ξ , η ) ⋅ ∬ D g d S \iint_D fg \;\text{d}S = f(\xi,\eta) \cdot \iint_D g \;\text{d}S
∬ D f g d S = f ( ξ , η ) ⋅ ∬ D g d S
二重积分的计算 : 若D = { ( x , y ) ∣ x ∈ [ a , b ] , y 1 ( x ) ≤ y ≤ y 2 ( x ) } D = \lbrace (x,y) \vert x \in [a,b], y_1(x) \le y \le y_2(x) \rbrace D = { ( x , y ) ∣ x ∈ [ a , b ] , y 1 ( x ) ≤ y ≤ y 2 ( x ) } , 其中y 1 , y 2 ∈ C [ a , b ] y_1,y_2 \in \mathscr C[a,b] y 1 , y 2 ∈ C [ a , b ] 且y 1 ≤ y 2 y_1 \le y_2 y 1 ≤ y 2 恒成立. 则:
∬ D f d S = ∫ a b ∫ y 1 ( x ) y 2 ( x ) f d y d x \iint_D f \;\text{d}S = \int_a^b \int_{y_1(x)}^{y_2(x)} f \;\text{d}y \;\text{d}x
∬ D f d S = ∫ a b ∫ y 1 ( x ) y 2 ( x ) f d y d x
D = { ( x , y ) ∣ y ∈ [ a , b ] , x 1 ( y ) ≤ x ≤ x 2 ( y ) } D = \lbrace (x,y) \vert y \in [a,b], x_1(y) \le x \le x_2(y) \rbrace D = { ( x , y ) ∣ y ∈ [ a , b ] , x 1 ( y ) ≤ x ≤ x 2 ( y ) } 情况类似.
注意若φ ( x , y ) = ( u , v ) \varphi(x,y) = (u,v) φ ( x , y ) = ( u , v ) 为连续可微双射, 即∀ ( x , y ) ∈ D , ∂ ( u , v ) ∂ ( x , y ) \forall (x,y) \in D, \frac{\partial (u,v)}{\partial (x,y)} ∀ ( x , y ) ∈ D , ∂ ( x , y ) ∂ ( u , v ) 可逆, 则:
d x d y = ∣ det ∂ ( x , y ) ∂ ( u , v ) ∣ d u d v = ∣ det ∂ ( u , v ) ∂ ( x , y ) ∣ − 1 d u d v \;\text{d}x\text{d}y = \left\vert \det \frac{\partial (x,y)}{\partial (u,v)} \right\vert \;\text{d}u\text{d}v = \left\vert \det \frac{\partial (u,v)}{\partial (x,y)} \right\vert^{-1} \;\text{d}u\text{d}v
d x d y = ∣ ∣ ∣ ∣ det ∂ ( u , v ) ∂ ( x , y ) ∣ ∣ ∣ ∣ d u d v = ∣ ∣ ∣ ∣ det ∂ ( x , y ) ∂ ( u , v ) ∣ ∣ ∣ ∣ − 1 d u d v
特别地, 对于极坐标有:
d x d y = ∣ det [ cos θ − ρ sin θ sin θ ρ cos θ ] ∣ d ρ d θ = ρ d ρ d θ \;\text{d}x\text{d}y = \left\vert \det \begin{bmatrix} \cos\theta & -\rho\sin\theta \\ \sin\theta & \rho\cos\theta \end{bmatrix} \right\vert \;\text{d}\rho\text{d}\theta = \rho \;\text{d}\rho\text{d}\theta
d x d y = ∣ ∣ ∣ ∣ det [ cos θ sin θ − ρ sin θ ρ cos θ ] ∣ ∣ ∣ ∣ d ρ d θ = ρ d ρ d θ
三维二重积分 : 面积微元d S \text{d}S d S 为:
d S = 1 + ( f x ′ ) 2 + ( f y ′ ) 2 d x d y \text{d}S = \sqrt{1+(f'_x)^2 + (f'_y)^2} \;\text{d}x\text{d}y
d S = 1 + ( f x ′ ) 2 + ( f y ′ ) 2 d x d y
若曲面单位法向量为n ⃗ = τ ⃗ 1 × τ ⃗ 2 ∥ τ ⃗ 1 × τ ⃗ 2 ∥ = ( cos α , cos β , cos γ ) \vec n = \frac{\vec \tau_1 \times \vec \tau_2}{\| \vec \tau_1 \times \vec \tau_2 \|} = (\cos \alpha, \cos \beta, \cos \gamma) n = ∥ τ 1 × τ 2 ∥ τ 1 × τ 2 = ( cos α , cos β , cos γ ) , 则也可写作:
d S = 1 ∣ cos γ ∣ d x d y \text{d}S = \frac{1}{\vert \cos\gamma \vert} \;\text{d}x\text{d}y
d S = ∣ cos γ ∣ 1 d x d y
若切向量具体为τ ⃗ 1 = ( x u ′ , y u ′ , z u ′ ) , τ ⃗ 2 = ( x v ′ , y v ′ , z v ′ ) \vec \tau_1 = (x'_u,y'_u,z'_u), \vec \tau_2 = (x'_v,y'_v,z'_v) τ 1 = ( x u ′ , y u ′ , z u ′ ) , τ 2 = ( x v ′ , y v ′ , z v ′ ) , 则:
n ⃗ = det [ i ⃗ j ⃗ k ⃗ x u ′ y u ′ z u ′ x v ′ y v ′ z v ′ ] = ( det ∂ ( y , z ) ∂ ( u , v ) , det ∂ ( z , x ) ∂ ( u , v ) , det ∂ ( x , y ) ∂ ( u , v ) ) = ( A , B , C ) d S = A 2 + B 2 + C 2 ∣ C ∣ d x d y = A 2 + B 2 + C 2 ∣ det ∂ ( x , y ) ∂ ( u , v ) ∣ ⋅ ∣ det ∂ ( x , y ) ∂ ( u , v ) ∣ d u d v = A 2 + B 2 + C 2 d u d v = ∥ τ ⃗ 1 × τ ⃗ 2 ∥ d u d v \begin{aligned}
\vec n &= \det \begin{bmatrix}
\vec i & \vec j & \vec k \\
x'_u & y'_u & z'_u \\
x'_v & y'_v & z'_v \\
\end{bmatrix} = \left(
\det \frac{\partial (y,z)}{\partial(u,v)},
\det \frac{\partial (z,x)}{\partial(u,v)},
\det \frac{\partial (x,y)}{\partial(u,v)}
\right) = (A,B,C) \\
\text{d}S &= \frac{\sqrt{A^2+B^2+C^2}}{\vert C \vert} \;\text{d}x\text{d}y \\
&= \frac{\sqrt{A^2+B^2+C^2}}{\left \vert \det \frac{\partial (x,y)}{\partial(u,v)} \right \vert} \cdot \left \vert \det \frac{\partial (x,y)}{\partial(u,v)} \right \vert\;\text{d}u\text{d}v \\
&= \sqrt{A^2+B^2+C^2} \;\text{d}u\text{d}v \\
&= \| \vec \tau_1 \times \vec \tau_2 \| \;\text{d}u\text{d}v
\end{aligned}
n d S = det ⎣ ⎡ i x u ′ x v ′ j y u ′ y v ′ k z u ′ z v ′ ⎦ ⎤ = ( det ∂ ( u , v ) ∂ ( y , z ) , det ∂ ( u , v ) ∂ ( z , x ) , det ∂ ( u , v ) ∂ ( x , y ) ) = ( A , B , C ) = ∣ C ∣ A 2 + B 2 + C 2 d x d y = ∣ ∣ ∣ det ∂ ( u , v ) ∂ ( x , y ) ∣ ∣ ∣ A 2 + B 2 + C 2 ⋅ ∣ ∣ ∣ ∣ det ∂ ( u , v ) ∂ ( x , y ) ∣ ∣ ∣ ∣ d u d v = A 2 + B 2 + C 2 d u d v = ∥ τ 1 × τ 2 ∥ d u d v
Gauss系数 :
E = ∥ τ ⃗ 1 ∥ 2 = ( x u ′ ) 2 + ( y u ′ ) 2 + ( z u ′ ) 2 F = ∥ τ ⃗ 2 ∥ 2 = ( x v ′ ) 2 + ( y v ′ ) 2 + ( z v ′ ) 2 G = τ ⃗ 1 ⋅ τ ⃗ 2 = x u ′ x v ′ + y u ′ y v ′ + z u ′ z v ′ d S = E F − G 2 d u d v \begin{aligned}
E &= \| \vec \tau_1 \|^2 = (x'_u)^2 + (y'_u)^2 + (z'_u)^2 \\
F &= \| \vec \tau_2 \|^2 = (x'_v)^2 + (y'_v)^2 + (z'_v)^2 \\
G &= \vec \tau_1 \cdot \vec \tau_2 = x'_ux'_v + y'_uy'_v + z'_uz'_v \\
\text{d}S &= \sqrt{EF-G^2}\;\text{d}u\text{d}v \\
\end{aligned}
E F G d S = ∥ τ 1 ∥ 2 = ( x u ′ ) 2 + ( y u ′ ) 2 + ( z u ′ ) 2 = ∥ τ 2 ∥ 2 = ( x v ′ ) 2 + ( y v ′ ) 2 + ( z v ′ ) 2 = τ 1 ⋅ τ 2 = x u ′ x v ′ + y u ′ y v ′ + z u ′ z v ′ = E F − G 2 d u d v
三重积分的计算 : 三重积分与二重积分定义类似. 特别地, 三重积分可以转化为"先二后一"或"先一后二"的积分.
∭ V f ( x , y ) d x d y d z = ∬ D ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y ) d z d x d y \iiint_V f(x,y) \;\text{d}x\text{d}y\text{d}z = \iint_D \int_{z_1(x,y)}^{z_2(x,y)} f(x,y) \;\text{d}z \;\text{d}x\text{d}y
∭ V f ( x , y ) d x d y d z = ∬ D ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y ) d z d x d y
∭ V f ( x , y ) d x d y d z = ∫ z 1 z 2 ∬ D z f ( x , y ) d x d y d z \iiint_V f(x,y) \;\text{d}x\text{d}y\text{d}z = \int_{z_1}^{z_2} \iint_{D_z} f(x,y) \;\text{d}x\text{d}y \;\text{d}z
∭ V f ( x , y ) d x d y d z = ∫ z 1 z 2 ∬ D z f ( x , y ) d x d y d z
与二重积分类似有:
d x d y d z = ∣ det ∂ ( x , y , z ) ∂ ( u , v , w ) ∣ d u d v d w = ∣ det ∂ ( u , v , w ) ∂ ( x , y , z ) ∣ − 1 d u d v d w \;\text{d}x\text{d}y\text{d}z = \left\vert \det \frac{\partial (x,y,z)}{\partial (u,v,w)} \right\vert \;\text{d}u\text{d}v\text{d}w = \left\vert \det \frac{\partial (u,v,w)}{\partial (x,y,z)} \right\vert^{-1} \;\text{d}u\text{d}v\text{d}w
d x d y d z = ∣ ∣ ∣ ∣ det ∂ ( u , v , w ) ∂ ( x , y , z ) ∣ ∣ ∣ ∣ d u d v d w = ∣ ∣ ∣ ∣ det ∂ ( x , y , z ) ∂ ( u , v , w ) ∣ ∣ ∣ ∣ − 1 d u d v d w
特别地, 对于柱坐标系有:
d x d y d z = ∣ det [ cos θ − ρ sin θ 0 sin θ ρ cos θ 0 0 0 1 ] ∣ d ρ d θ d z = ρ d ρ d θ d z \;\text{d}x\text{d}y\text{d}z = \left\vert \det \begin{bmatrix} \cos\theta & -\rho\sin\theta & 0 \\ \sin\theta & \rho\cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\vert \;\text{d}\rho\text{d}\theta\text{d}z = \rho \;\text{d}\rho\text{d}\theta\text{d}z
d x d y d z = ∣ ∣ ∣ ∣ ∣ ∣ det ⎣ ⎡ cos θ sin θ 0 − ρ sin θ ρ cos θ 0 0 0 1 ⎦ ⎤ ∣ ∣ ∣ ∣ ∣ ∣ d ρ d θ d z = ρ d ρ d θ d z
对于球坐标系有(x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ x = \rho\sin\varphi\cos\theta, y = \rho\sin\varphi\sin\theta, z = \rho\cos\varphi x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ ):
d x d y d z = ∣ det [ sin φ cos θ ρ cos φ cos θ − ρ sin φ sin θ sin φ sin θ ρ cos φ sin θ ρ sin φ cos θ cos φ − ρ sin φ 0 ] ∣ d ρ d φ d θ = ρ 2 sin φ d ρ d φ d θ \;\text{d}x\text{d}y\text{d}z = \left\vert \det \begin{bmatrix} \sin\varphi\cos\theta & \rho\cos\varphi\cos\theta & -\rho\sin\varphi\sin\theta \\ \sin\varphi\sin\theta & \rho\cos\varphi\sin\theta & \rho\sin\varphi\cos\theta \\ \cos\varphi & -\rho\sin\varphi & 0 \end{bmatrix} \right\vert \;\text{d}\rho\text{d}\varphi\text{d}\theta = \rho^2 \sin \varphi \;\text{d}\rho\text{d}\varphi\text{d}\theta
d x d y d z = ∣ ∣ ∣ ∣ ∣ ∣ det ⎣ ⎡ sin φ cos θ sin φ sin θ cos φ ρ cos φ cos θ ρ cos φ sin θ − ρ sin φ − ρ sin φ sin θ ρ sin φ cos θ 0 ⎦ ⎤ ∣ ∣ ∣ ∣ ∣ ∣ d ρ d φ d θ = ρ 2 sin φ d ρ d φ d θ
物理量计算 :
质量:
M = ∭ V ρ ( x , y , z ) d x d y d z M = \iiint_V \rho(x,y,z) \;\text{d}x\text{d}y\text{d}z
M = ∭ V ρ ( x , y , z ) d x d y d z
质心(静力矩/ M /M / M ):
{ x ~ = 1 M ∭ V x ρ ( x , y , z ) d x d y d z y ~ = 1 M ∭ V y ρ ( x , y , z ) d x d y d z z ~ = 1 M ∭ V z ρ ( x , y , z ) d x d y d z \left\lbrace
\begin{aligned}
\widetilde x &= \frac{1}{M}\iiint_V x\rho(x,y,z) \;\text{d}x\text{d}y\text{d}z \\
\widetilde y &= \frac{1}{M}\iiint_V y\rho(x,y,z) \;\text{d}x\text{d}y\text{d}z \\
\widetilde z &= \frac{1}{M}\iiint_V z\rho(x,y,z) \;\text{d}x\text{d}y\text{d}z \\
\end{aligned}
\right.
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ x y z = M 1 ∭ V x ρ ( x , y , z ) d x d y d z = M 1 ∭ V y ρ ( x , y , z ) d x d y d z = M 1 ∭ V z ρ ( x , y , z ) d x d y d z
转动惯量:
I = ∭ V ρ ( x , y , z ) ⋅ r 2 ( x , y , z ) d x d y d z I = \iiint_V \rho(x,y,z) \cdot r^2(x,y,z) \;\text{d}x\text{d}y\text{d}z
I = ∭ V ρ ( x , y , z ) ⋅ r 2 ( x , y , z ) d x d y d z
引力:
{ F x = G m 0 ∭ V ( x − x 0 ) ρ ( x , y , z ) r 3 d x d y d z F y = G m 0 ∭ V ( y − y 0 ) ρ ( x , y , z ) r 3 d x d y d z F z = G m 0 ∭ V ( z − z 0 ) ρ ( x , y , z ) r 3 d x d y d z \left\lbrace
\begin{aligned}
F_x &= Gm_0\iiint_V \frac{(x-x_0)\rho(x,y,z)}{r^3} \;\text{d}x\text{d}y\text{d}z \\
F_y &= Gm_0\iiint_V \frac{(y-y_0)\rho(x,y,z)}{r^3} \;\text{d}x\text{d}y\text{d}z \\
F_z &= Gm_0\iiint_V \frac{(z-z_0)\rho(x,y,z)}{r^3} \;\text{d}x\text{d}y\text{d}z \\
\end{aligned}
\right.
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ F x F y F z = G m 0 ∭ V r 3 ( x − x 0 ) ρ ( x , y , z ) d x d y d z = G m 0 ∭ V r 3 ( y − y 0 ) ρ ( x , y , z ) d x d y d z = G m 0 ∭ V r 3 ( z − z 0 ) ρ ( x , y , z ) d x d y d z
曲线积分
第I型曲线积分 :
∫ L f ( x , y , z ) d ℓ \int_L f(x,y,z) \;\text{d}\ell
∫ L f ( x , y , z ) d ℓ
其中:
d ℓ = ( x t ′ ) 2 + ( y t ′ ) 2 + ( z t ′ ) 2 d t \;\text{d}\ell = \sqrt{(x'_t)^2 + (y'_t)^2 + (z'_t)^2}\;\text{d}t
d ℓ = ( x t ′ ) 2 + ( y t ′ ) 2 + ( z t ′ ) 2 d t
特别地, 对于封闭曲线记为:
∮ L f ( x , y , z ) d ℓ \oint_L f(x,y,z) \;\text{d}\ell
∮ L f ( x , y , z ) d ℓ
第I型曲线积分不具有方向性:
∫ A B ⏠ f ( x , y , z ) d ℓ = ∫ B A ⏠ f ( x , y , z ) d ℓ \int_{\overgroup{AB}} f(x,y,z) \;\text{d}\ell = \int_{\overgroup{BA}} f(x,y,z) \;\text{d}\ell
∫ A B f ( x , y , z ) d ℓ = ∫ B A f ( x , y , z ) d ℓ
f ≥ g f \ge g f ≥ g ⇒ \Rightarrow ⇒ ∫ L f d ℓ ≥ ∬ L g d ℓ \int_L f \;\text{d}\ell \ge \iint_L g \;\text{d}\ell ∫ L f d ℓ ≥ ∬ L g d ℓ .
∣ ∫ L f d ℓ ∣ ≤ ∬ L ∣ f ∣ d ℓ \left\vert \int_L f \;\text{d}\ell \right\vert \le \iint_L \vert f \vert \;\text{d}\ell ∣ ∣ ∫ L f d ℓ ∣ ∣ ≤ ∬ L ∣ f ∣ d ℓ .
第I型曲线积分中值定理 : f ∈ C ( L ) f \in \mathscr C(L) f ∈ C ( L ) , ∃ ( ξ , η , ζ ) ∈ L \exists (\xi,\eta,\zeta) \in L ∃ ( ξ , η , ζ ) ∈ L s.t.:
∬ L f ( x , y , z ) d ℓ = f ( ξ , η , ζ ) ⋅ ℓ \iint_L f(x,y,z) \;\text{d}\ell = f(\xi,\eta,\zeta) \cdot \ell
∬ L f ( x , y , z ) d ℓ = f ( ξ , η , ζ ) ⋅ ℓ
第II型曲线积分 : F ⃗ ( x , y , z ) = ( X ( x , y , z ) , Y ( x , y , z ) , Z ( x , y , z ) ) \vec F(x,y,z) = (X(x,y,z),Y(x,y,z),Z(x,y,z)) F ( x , y , z ) = ( X ( x , y , z ) , Y ( x , y , z ) , Z ( x , y , z ) ) , r ⃗ = τ ⃗ d ℓ = ( d x , d y , d z ) \vec r = \vec \tau \text{d}\ell = (\text{d}x,\text{d}y,\text{d}z) r = τ d ℓ = ( d x , d y , d z ) , 有时r ⃗ \vec r r 也写做ℓ ⃗ \vec \ell ℓ .
∫ L F ⃗ ⋅ d r ⃗ = ∫ L F ⃗ ⋅ τ ⃗ d ℓ = ∫ L X d x + Y d y + Z d z \begin{aligned}
\int_L \vec F \cdot \text{d}\vec r &= \int_L \vec F \cdot \vec \tau \text{d}\ell = \int_L X\text{d}x + Y\text{d}y + Z\text{d}z \\
\end{aligned}
∫ L F ⋅ d r = ∫ L F ⋅ τ d ℓ = ∫ L X d x + Y d y + Z d z
注意∫ L X d x + Y d y + Z d z = ∫ L X d x + ∫ L Y d y + ∫ L Z d z \int_L X\text{d}x + Y\text{d}y + Z\text{d}z = \int_L X\;\text{d}x + \int_L Y \;\text{d}y + \int_L Z \;\text{d}z ∫ L X d x + Y d y + Z d z = ∫ L X d x + ∫ L Y d y + ∫ L Z d z , 其中的曲线积分∫ L \int_L ∫ L 不能直接等价于一重积分∫ \int ∫ , 因为另一变量在改变而非常数. ∫ L f ( x , y ) d x \int_L f(x,y) \;\text{d}x ∫ L f ( x , y ) d x 这种曲线积分在封闭情况下可以求解, 参见下方"Green公式"与"Stokes公式"(另外, 如果被积函数和另一变量无关也可以求解).
对于闭区域D D D 的边界曲线∂ D = L \partial D = L ∂ D = L , 一般将其正方向定义为D D D 内部在L L L 左侧, 记为L + L^+ L + . 默认封闭曲线积分为沿正方向的积分.
若L L L 为多条有向曲线段L i L_i L i 首尾相接而成, 则:
∬ L F ⃗ ⋅ τ ⃗ d ℓ = ∑ i = 1 m ∬ L i F ⃗ ⋅ τ ⃗ d ℓ \iint_L \vec F \cdot \vec \tau \;\text{d}\ell = \sum_{i=1}^m \iint_{L_i} \vec F \cdot \vec \tau \;\text{d}\ell
∬ L F ⋅ τ d ℓ = i = 1 ∑ m ∬ L i F ⋅ τ d ℓ
且F ⃗ ⋅ τ ⃗ ∈ R ( L ) \vec F \cdot \vec \tau \in \mathscr R(L) F ⋅ τ ∈ R ( L ) ⇔ \Leftrightarrow ⇔ ∀ i , F ⃗ ⋅ τ ⃗ ∈ R ( L i ) \forall i, \vec F \cdot \vec \tau \in \mathscr R(L_i) ∀ i , F ⋅ τ ∈ R ( L i ) .
第II型曲线积分具有方向性:
∫ A B ⏠ F ⃗ ( x , y , z ) ⋅ d r ⃗ = − ∫ B A ⏠ F ⃗ ( x , y , z ) ⋅ d r ⃗ \int_{\overgroup{AB}} \vec F(x,y,z) \cdot \text{d}\vec r = -\int_{\overgroup{BA}} \vec F(x,y,z) \cdot \text{d}\vec r
∫ A B F ( x , y , z ) ⋅ d r = − ∫ B A F ( x , y , z ) ⋅ d r
事实上, ∫ F ⋅ τ ⃗ d ℓ \int F \cdot \vec \tau \;\text{d}\ell ∫ F ⋅ τ d ℓ 也可看做是第I型曲线积分不具有方向性, 但F ⃗ ⋅ ( − τ ⃗ ) = − F ⃗ ⋅ r ⃗ \vec F \cdot (-\vec \tau) = - \vec F \cdot \vec r F ⋅ ( − τ ) = − F ⋅ r , 故第II型曲线积分具有方向性.
Green公式 :
D ⊆ R 2 D \subseteq \mathbb R^2 D ⊆ R 2 , P , Q ∈ C ( 1 ) ( D ) P,Q \in \mathscr C^{(1)}(D) P , Q ∈ C ( 1 ) ( D ) , ∂ D = L \partial D = L ∂ D = L 光滑或分段光滑, 则:
∮ L + P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∬ D det [ ∂ ∂ x ∂ ∂ y P Q ] d x d y \oint_{L^+} P\text{d}x + Q\text{d}y = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \;\text{d}x\text{d}y = \iint_D \det \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \\ \end{bmatrix} \;\text{d}x\text{d}y
∮ L + P d x + Q d y = ∬ D ( ∂ x ∂ Q − ∂ y ∂ P ) d x d y = ∬ D det [ ∂ x ∂ P ∂ y ∂ Q ] d x d y
更进一步, 事实上有:
∮ L + P d x = − ∬ D ∂ P ∂ y d x d y ∮ L + Q d y = ∬ D ∂ Q ∂ x d x d y \begin{aligned}
\oint_{L^+} P\text{d}x &= - \iint_D \frac{\partial P}{\partial y}\;\text{d}x\text{d}y \\
\oint_{L^+} Q\text{d}y &= \iint_D \frac{\partial Q}{\partial x}\;\text{d}x\text{d}y \\
\end{aligned}
∮ L + P d x ∮ L + Q d y = − ∬ D ∂ y ∂ P d x d y = ∬ D ∂ x ∂ Q d x d y
注意到如果构造P , Q P,Q P , Q 使得∂ Q ∂ x − ∂ P ∂ y = C \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = C ∂ x ∂ Q − ∂ y ∂ P = C 为非零常数, 则可用于求出D D D 区域的面积. 例如:
S ( D ) = 1 2 ∮ ∂ D + x d y − y d x S(D) = \frac{1}{2}\oint_{\partial D^+} x\text{d}y-y\text{d}x
S ( D ) = 2 1 ∮ ∂ D + x d y − y d x
另外, 分别考虑曲线在平面内的切向量和τ ⃗ \vec \tau τ 和朝向区域外侧的单位法向量n ⃗ \vec n n , Green公式也可写作:
∮ L + ( P , Q ) ⋅ τ ⃗ d ℓ = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y ∮ L + ( P , Q ) ⋅ n ⃗ d ℓ = ∬ D ( ∂ P ∂ x + ∂ Q ∂ y ) d x d y \begin{aligned}
\oint_{L^+} (P,Q) \cdot \vec \tau\text{d}\ell &= \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \;\text{d}x\text{d}y \\
\oint_{L^+} (P,Q) \cdot \vec n\text{d}\ell &= \iint_D \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \;\text{d}x\text{d}y \\
\end{aligned}
∮ L + ( P , Q ) ⋅ τ d ℓ ∮ L + ( P , Q ) ⋅ n d ℓ = ∬ D ( ∂ x ∂ Q − ∂ y ∂ P ) d x d y = ∬ D ( ∂ x ∂ P + ∂ y ∂ Q ) d x d y
路径无关积分 :
D ⊆ R 2 D \subseteq \mathbb R^2 D ⊆ R 2 , P , Q ∈ C ( 1 ) ( D ) P,Q \in \mathscr C^{(1)}(D) P , Q ∈ C ( 1 ) ( D ) , L L L 光滑或分段光滑, 则以下命题等价:
∫ L ( A , B ) P d x + Q d y \int_{L(A,B)} P\text{d}x+Q\text{d}y ∫ L ( A , B ) P d x + Q d y 路径无关.
∃ U \exists U ∃ U s.t.: ∀ ( x , y ) ∈ D , d U = P d x + Q d y \forall (x,y) \in D, \text{d}U = P\text{d}x + Q\text{d}y ∀ ( x , y ) ∈ D , d U = P d x + Q d y . 即:U ( x , y ) = ∫ ( x 0 , y 0 ) ( x , y ) P d x + Q d y U(x,y) = \int_{(x_0,y_0)}^{(x,y)} P\text{d}x + Q\text{d}y
U ( x , y ) = ∫ ( x 0 , y 0 ) ( x , y ) P d x + Q d y
∀ ( x , y ) ∈ D \forall (x,y) \in D ∀ ( x , y ) ∈ D , ∂ P ∂ y = ∂ Q ∂ x = ∂ 2 U ∂ x ∂ y \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{\partial^2 U}{\partial x \partial y} ∂ y ∂ P = ∂ x ∂ Q = ∂ x ∂ y ∂ 2 U .
∀ L ⊆ D \forall L \subseteq D ∀ L ⊆ D , 若L L L 为光滑或分段光滑封闭曲线, 则∮ L P d x + Q d y = 0 \oint_L P\text{d}x + Q\text{d}y = 0 ∮ L P d x + Q d y = 0 .
全微分方程 : 若∃ U , d U ( x , y ) = P d x + Q d y \exists U, \text{d}U(x,y) = P\text{d}x+Q\text{d}y ∃ U , d U ( x , y ) = P d x + Q d y , 则方程P d x + Q d y = 0 P\text{d}x+Q\text{d}y = 0 P d x + Q d y = 0 为全微分方程. 由上述路径无关积分结论可得:
P d x + Q d y = 0 P\text{d}x+Q\text{d}y = 0 P d x + Q d y = 0 是全微分方程 ⇔ \Leftrightarrow ⇔ ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} ∂ y ∂ P = ∂ x ∂ Q .
P = ∂ U ∂ x , Q = ∂ U ∂ y P = \frac{\partial U}{\partial x}, Q = \frac{\partial U}{\partial y} P = ∂ x ∂ U , Q = ∂ y ∂ U .
全微分方程的通解为U ( x , y ) = C U(x,y) = C U ( x , y ) = C .
求全微分方程的通解函数U U U 的方法:
任选一条路径L L L 进行曲线积分.
定义U x ( x , y ) = ∫ P d x U_x(x,y) = \int P\;\text{d}x U x ( x , y ) = ∫ P d x , 则∂ U x ∂ x = P \frac{\partial U_x}{\partial x} = P ∂ x ∂ U x = P . 若U ( x , y ) = U x ( x , y ) + U y ( y ) U(x,y) = U_x(x,y) + U_y(y) U ( x , y ) = U x ( x , y ) + U y ( y ) , 则Q = ∂ U ∂ y = ∂ U x ∂ y + d U y d y Q = \frac{\partial U}{\partial y} = \frac{\partial U_x}{\partial y} + \frac{\text{d} U_y}{\text{d} y} Q = ∂ y ∂ U = ∂ y ∂ U x + d y d U y , 即U y = ∫ Q − ∂ U x ∂ y d y U_y = \int Q - \frac{\partial U_x}{\partial y} \;\text{d}y U y = ∫ Q − ∂ y ∂ U x d y . 即:U = ∫ P d x + ∫ Q − ∂ ( ∫ P d x ) ∂ y d y + C U = \int P\;\text{d}x + \int Q - \frac{\partial\left(\int P\;\text{d}x\right)}{\partial y} \;\text{d}y + C
U = ∫ P d x + ∫ Q − ∂ y ∂ ( ∫ P d x ) d y + C
直接凑微分P d x + Q d y = d U P\text{d}x + Q\text{d}y = \text{d}U P d x + Q d y = d U .
常见全微分形式:
y d x + x d y = d ( x y ) y\text{d}x + x\text{d}y = \text{d}(xy)
y d x + x d y = d ( x y )
y d x − x d y y 2 = d ( x y ) \frac{y\text{d}x - x\text{d}y}{y^2} = \text{d}\left(\frac{x}{y}\right)
y 2 y d x − x d y = d ( y x )
y d x − x d y x y = d ( ln ∣ x y ∣ ) \frac{y\text{d}x - x\text{d}y}{xy} = \text{d}\left(\ln \left\vert \frac{x}{y} \right\vert \right)
x y y d x − x d y = d ( ln ∣ ∣ ∣ ∣ y x ∣ ∣ ∣ ∣ )
y d x − x d y x 2 + y 2 = d ( arctan x y ) \frac{y\text{d}x - x\text{d}y}{x^2+y^2} = \text{d}\left(\arctan \frac{x}{y} \right)
x 2 + y 2 y d x − x d y = d ( arctan y x )
x d x + y d y x 2 + y 2 = d ( 1 2 ln ( x 2 + y 2 ) ) \frac{x\text{d}x + y\text{d}y}{x^2+y^2} = \text{d}\left(\frac{1}{2}\ln(x^2+y^2) \right)
x 2 + y 2 x d x + y d y = d ( 2 1 ln ( x 2 + y 2 ) )
y d x − x d y x 2 − y 2 = d ( 1 2 ln ∣ x − y x + y ∣ ) \frac{y\text{d}x - x\text{d}y}{x^2-y^2} = \text{d}\left(\frac{1}{2}\ln\left\vert \frac{x-y}{x+y} \right\vert \right)
x 2 − y 2 y d x − x d y = d ( 2 1 ln ∣ ∣ ∣ ∣ x + y x − y ∣ ∣ ∣ ∣ )
积分因子 : 若P d x + Q d y = 0 P\text{d}x + Q\text{d}y = 0 P d x + Q d y = 0 不是全微分方程, 但μ P d x + μ Q d y = 0 \mu P\text{d}x + \mu Q\text{d}y = 0 μ P d x + μ Q d y = 0 是全微分方程(即∂ ( μ ⋅ P ) ∂ y = ∂ ( μ ⋅ Q ) ∂ x \frac{\partial(\mu \cdot P)}{\partial y} = \frac{\partial(\mu \cdot Q)}{\partial x} ∂ y ∂ ( μ ⋅ P ) = ∂ x ∂ ( μ ⋅ Q ) , 也即μ y ′ P + μ P y ′ = μ x ′ Q + μ Q x ′ \mu'_yP + \mu P'_y = \mu'_xQ + \mu Q'_x μ y ′ P + μ P y ′ = μ x ′ Q + μ Q x ′ ), 则μ ( x , y ) \mu(x,y) μ ( x , y ) 为P d x + Q d y = 0 P\text{d}x + Q\text{d}y = 0 P d x + Q d y = 0 的积分因子.
若μ ( x , y ) = μ ( x ) \mu(x,y) = \mu(x) μ ( x , y ) = μ ( x ) (即μ y ′ = 0 \mu'_y = 0 μ y ′ = 0 ), 则:
μ x ′ = P y ′ − Q x ′ Q μ ⇒ μ = exp ( ∫ P y ′ − Q x ′ Q d x ) \mu'_x = \frac{P'_y - Q'_x}{Q}\mu \Rightarrow \mu = \exp\left(\int \frac{P'_y - Q'_x}{Q} \;\text{d}x \right)
μ x ′ = Q P y ′ − Q x ′ μ ⇒ μ = exp ( ∫ Q P y ′ − Q x ′ d x )
若μ ( x , y ) = μ ( y ) \mu(x,y) = \mu(y) μ ( x , y ) = μ ( y ) (即μ x ′ = 0 \mu'_x = 0 μ x ′ = 0 ), 则:
μ y ′ = P y ′ − Q x ′ − P μ ⇒ μ = exp ( ∫ P y ′ − Q x ′ − P d y ) \mu'_y = \frac{P'_y - Q'_x}{-P}\mu \Rightarrow \mu = \exp\left(\int \frac{P'_y - Q'_x}{-P} \;\text{d}y \right)
μ y ′ = − P P y ′ − Q x ′ μ ⇒ μ = exp ( ∫ − P P y ′ − Q x ′ d y )
若求出积分因子, 则全微分方程μ P d x + μ Q d y = 0 \mu P\text{d}x + \mu Q\text{d}y = 0 μ P d x + μ Q d y = 0 通解为U ( x , y ) = C U(x,y) = C U ( x , y ) = C 也就是原方程的通解.
曲面积分
第I型曲面积分 :
∬ Σ f ( x , y , z ) d S \iint_\Sigma f(x,y,z) \;\text{d}S
∬ Σ f ( x , y , z ) d S
其中(与三维二重积分类似):
d S = 1 + ( f x ′ ) 2 + ( f y ′ ) 2 d x d y d S = 1 ∣ cos γ ∣ d x d y d S = A 2 + B 2 + C 2 ∣ C ∣ d x d y d S = A 2 + B 2 + C 2 d u d v d S = ∥ τ ⃗ 1 × τ ⃗ 2 ∥ d u d v d S = E F − G 2 d u d v \begin{aligned}
\text{d}S &= \sqrt{1+(f'_x)^2 + (f'_y)^2} \;\text{d}x\text{d}y \\
\text{d}S &= \frac{1}{\vert \cos\gamma \vert} \;\text{d}x\text{d}y \\
\text{d}S &= \frac{\sqrt{A^2+B^2+C^2}}{\vert C \vert} \;\text{d}x\text{d}y \\
\text{d}S &= \sqrt{A^2+B^2+C^2} \;\text{d}u\text{d}v \\
\text{d}S &= \| \vec \tau_1 \times \vec \tau_2 \| \;\text{d}u\text{d}v \\
\text{d}S &= \sqrt{EF-G^2}\;\text{d}u\text{d}v \\
\end{aligned}
d S d S d S d S d S d S = 1 + ( f x ′ ) 2 + ( f y ′ ) 2 d x d y = ∣ cos γ ∣ 1 d x d y = ∣ C ∣ A 2 + B 2 + C 2 d x d y = A 2 + B 2 + C 2 d u d v = ∥ τ 1 × τ 2 ∥ d u d v = E F − G 2 d u d v
事实上, 由行列式的物理意义即可得到, 对于任意τ ⃗ u \vec \tau_u τ u 和τ ⃗ v \vec \tau_v τ v 确定的d S \text{d}S d S , 以及τ ⃗ p \vec \tau_p τ p 和τ ⃗ q \vec \tau_q τ q 确定的d S ′ \text{d}S' d S ′ , 都有:
d S = ∣ det ∂ ( u , v ) ∂ ( p , q ) ∣ d S ′ \text{d}S = \left\vert \det \frac{\partial (u,v)}{\partial (p,q)} \right\vert \;\text{d}S'
d S = ∣ ∣ ∣ ∣ det ∂ ( p , q ) ∂ ( u , v ) ∣ ∣ ∣ ∣ d S ′
特别地, 对于封闭曲线记为:
∯ Σ f ( x , y , z ) d S \oiint_\Sigma f(x,y,z) \;\text{d}S
∬ Σ f ( x , y , z ) d S
第I型曲面积分中值定理 : f ∈ C ( Σ ) f \in \mathscr C(\Sigma) f ∈ C ( Σ ) , Σ \Sigma Σ 光滑, ∃ ( ξ , η , ζ ) ∈ Σ \exists (\xi,\eta,\zeta) \in \Sigma ∃ ( ξ , η , ζ ) ∈ Σ s.t.:
∬ Σ f ( x , y , z ) d S = f ( ξ , η , ζ ) ⋅ S ( Σ ) \iint_\Sigma f(x,y,z)\;\text{d}S = f(\xi,\eta,\zeta) \cdot S(\Sigma)
∬ Σ f ( x , y , z ) d S = f ( ξ , η , ζ ) ⋅ S ( Σ )
Poisson公式 :
∬ x 2 + y 2 + z 2 = 1 f ( a x + b y + c z ) d S = 2 π ∫ − 1 1 f ( u a 2 + b 2 + c 2 ) d u ∬ x 2 + y 2 + z 2 = r 2 f ( a x + b y + c z ) d S = 2 π r ∫ − r r f ( u a 2 + b 2 + c 2 ) d u \begin{aligned}
\iint_{x^2+y^2+z^2=1} f(ax+by+cz)\;\text{d}S &= 2\pi\int_{-1}^1 f\left(u\sqrt{a^2+b^2+c^2}\right)\;\text{d}u \\
\iint_{x^2+y^2+z^2=r^2} f(ax+by+cz)\;\text{d}S &= 2\pi r\int_{-r}^r f\left(u\sqrt{a^2+b^2+c^2}\right)\;\text{d}u \\
\end{aligned}
∬ x 2 + y 2 + z 2 = 1 f ( a x + b y + c z ) d S ∬ x 2 + y 2 + z 2 = r 2 f ( a x + b y + c z ) d S = 2 π ∫ − 1 1 f ( u a 2 + b 2 + c 2 ) d u = 2 π r ∫ − r r f ( u a 2 + b 2 + c 2 ) d u
双侧曲面 : 曲面S S S 上任意一点p 0 p_0 p 0 处存在两个共线反向法向量, 选定其中一个为正方向, 当动点p p p 从p 0 p_0 p 0 出发沿S S S 上任意封闭曲线回到p 0 p_0 p 0 时, 法向量正方向与出发时正方向相同, 则S S S 为双侧曲面. (单侧曲面例如莫比乌斯环). 规定方向的双侧曲面为有向曲面 .
第II型曲面积分 :F ⃗ ( x , y , z ) = ( X ( x , y , z ) , Y ( x , y , z ) , Z ( x , y , z ) ) \vec F(x,y,z) = (X(x,y,z),Y(x,y,z),Z(x,y,z)) F ( x , y , z ) = ( X ( x , y , z ) , Y ( x , y , z ) , Z ( x , y , z ) ) , S ⃗ = n ⃗ d S = ( cos α , cos β , cos γ ) d S = ( d y ∧ d z , d z ∧ d x , d x ∧ d y ) \vec S = \vec n \text{d}S = (\cos\alpha,\cos\beta,\cos\gamma)\text{d}S = (\text{d}y \wedge \text{d}z, \text{d}z \wedge \text{d}x, \text{d}x \wedge \text{d}y) S = n d S = ( cos α , cos β , cos γ ) d S = ( d y ∧ d z , d z ∧ d x , d x ∧ d y ) , 其中n ⃗ \vec n n 是有向曲面正方向一侧的单位法向量:
∬ Σ + F ⃗ ⋅ d S ⃗ = ∬ Σ + F ⃗ ⋅ n ⃗ d S = ∬ Σ + X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y \begin{aligned}
\iint_{\Sigma^+} \vec F \cdot \text{d}\vec S &= \iint_{\Sigma^+} \vec F \cdot \vec n \text{d}S = \iint_{\Sigma^+} X \text{d}y \wedge \text{d}z + Y \text{d}z \wedge \text{d}x + Z \text{d}x \wedge \text{d}y \\
\end{aligned}
∬ Σ + F ⋅ d S = ∬ Σ + F ⋅ n d S = ∬ Σ + X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y
其中: d y ∧ d z = cos α d S = A A 2 + B 2 + C 2 d S = A A 2 + B 2 + C 2 × A 2 + B 2 + C 2 ∣ A ∣ d y d z = sgn ( A ) d y d z \text{d}y\wedge\text{d}z = \cos\alpha\;\text{d}S = \frac{A}{\sqrt{A^2+B^2+C^2}}\;\text{d}S = \frac{A}{\sqrt{A^2+B^2+C^2}} \times \frac{\sqrt{A^2+B^2+C^2}}{\vert A \vert}\;\text{d}y\text{d}z = \text{sgn}(A)\;\text{d}y\text{d}z d y ∧ d z = cos α d S = A 2 + B 2 + C 2 A d S = A 2 + B 2 + C 2 A × ∣ A ∣ A 2 + B 2 + C 2 d y d z = sgn ( A ) d y d z . 另外两项同理.
注意∬ Σ + X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y = ∬ Σ + X d y ∧ d z + ∬ Σ + Y d z ∧ d x + ∬ Σ + Z d x ∧ d y \iint_{\Sigma^+} X \text{d}y \wedge \text{d}z + Y \text{d}z \wedge \text{d}x + Z \text{d}x \wedge \text{d}y = \iint_{\Sigma^+} X \text{d}y \wedge \text{d}z + \iint_{\Sigma^+} Y \text{d}z \wedge \text{d}x + \iint_{\Sigma^+} Z \text{d}x \wedge \text{d}y ∬ Σ + X d y ∧ d z + Y d z ∧ d x + Z d x ∧ d y = ∬ Σ + X d y ∧ d z + ∬ Σ + Y d z ∧ d x + ∬ Σ + Z d x ∧ d y , 其中的曲面积分∬ Σ + \iint_{\Sigma^+} ∬ Σ + 不能直接等价于二重积分∬ \iint ∬ , 因为第三变量在改变而非常数. 不同于曲线积分, ∬ Σ + f ( x , y , z ) d y ∧ d z \iint_{\Sigma^+} f(x,y,z) \;\text{d}y\wedge\text{d}z ∬ Σ + f ( x , y , z ) d y ∧ d z 这种曲面积分在封闭情况下可以求解, 参见下方"Gauss公式"(另外, 类似于曲线积分如果被积函数和第三变量无关也可以求解).
对于闭区域V V V 的边界曲线∂ V = Σ \partial V = \Sigma ∂ V = Σ , 一般将其正方向定义为Σ \Sigma Σ 的外侧, 记为Σ + \Sigma^+ Σ + . 默认封闭曲线积分为沿正方向的积分.
第II型曲面积分具有方向性:
∬ Σ + F ⃗ ( x , y , z ) ⋅ d S ⃗ = − ∬ Σ − F ⃗ ( x , y , z ) ⋅ d S ⃗ \iint_{\Sigma^+} \vec F(x,y,z) \cdot \text{d}\vec S = -\iint_{\Sigma^-} \vec F(x,y,z) \cdot \text{d}\vec S
∬ Σ + F ( x , y , z ) ⋅ d S = − ∬ Σ − F ( x , y , z ) ⋅ d S
事实上, ∫ F ⋅ n ⃗ d S \int F \cdot \vec n \;\text{d}S ∫ F ⋅ n d S 也可看做是第I型曲面积分不具有方向性, 但F ⃗ ⋅ ( − n ⃗ ) = − F ⃗ ⋅ n ⃗ \vec F \cdot (-\vec n) = - \vec F \cdot \vec n F ⋅ ( − n ) = − F ⋅ n , 故第II型曲面积分具有方向性.
∬ Σ + F ⃗ ⋅ d S ⃗ = ± ∬ D X A + Y B + Z C d u d v \iint_{\Sigma^+} \vec F \cdot \text{d}\vec S = \pm \iint_D XA + YB + ZC \;\text{d}u\text{d}v
∬ Σ + F ⋅ d S = ± ∬ D X A + Y B + Z C d u d v
其中:
A = det ∂ ( y , z ) ∂ ( u , v ) , B = det ∂ ( z , x ) ∂ ( u , v ) , C = det ∂ ( x , y ) ∂ ( u , v ) A = \det \frac{\partial (y,z)}{\partial(u,v)},
B = \det \frac{\partial (z,x)}{\partial(u,v)},
C = \det \frac{\partial (x,y)}{\partial(u,v)}
A = det ∂ ( u , v ) ∂ ( y , z ) , B = det ∂ ( u , v ) ∂ ( z , x ) , C = det ∂ ( u , v ) ∂ ( x , y )
Gauss公式 :
V ⊆ R 3 V \subseteq \mathbb R^3 V ⊆ R 3 , P , Q , R ∈ C ( 1 ) ( V ) P,Q,R \in \mathscr C^{(1)}(V) P , Q , R ∈ C ( 1 ) ( V ) , ∂ V = Σ \partial V = \Sigma ∂ V = Σ 光滑或分片光滑, 则:
∯ Σ + P d y ∧ d z + Q d z ∧ d x + R d x ∧ d y = ∭ V ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z d x d y d z \oiint_{\Sigma^+} P \text{d}y \wedge \text{d}z + Q \text{d}z \wedge \text{d}x + R \text{d}x \wedge \text{d}y = \iiint_V \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} \;\text{d}x\text{d}y\text{d}z
∬ Σ + P d y ∧ d z + Q d z ∧ d x + R d x ∧ d y = ∭ V ∂ x ∂ P + ∂ y ∂ Q + ∂ z ∂ R d x d y d z
更进一步, 事实上有:
∯ Σ + P d y ∧ d z = ∭ V ∂ P ∂ x d V ∯ Σ + Q d z ∧ d x = ∭ V ∂ Q ∂ y d V ∯ Σ + R d x ∧ d y = ∭ V ∂ R ∂ z d V \begin{aligned}
\oiint_{\Sigma^+} P\text{d}y\wedge\text{d}z &= \iiint_V \frac{\partial P}{\partial x}\;\text{d}V \\
\oiint_{\Sigma^+} Q\text{d}z\wedge\text{d}x &= \iiint_V \frac{\partial Q}{\partial y}\;\text{d}V \\
\oiint_{\Sigma^+} R\text{d}x\wedge\text{d}y &= \iiint_V \frac{\partial R}{\partial z}\;\text{d}V \\
\end{aligned}
∬ Σ + P d y ∧ d z ∬ Σ + Q d z ∧ d x ∬ Σ + R d x ∧ d y = ∭ V ∂ x ∂ P d V = ∭ V ∂ y ∂ Q d V = ∭ V ∂ z ∂ R d V
注意到如果构造P , Q , R P,Q,R P , Q , R 使得∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = C \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} = C ∂ x ∂ P + ∂ y ∂ Q + ∂ z ∂ R = C 为非零常数, 则可用于求出V V V 区域的体积.
Stokes公式 :
S S S 为光滑双侧曲面, P , Q , R ∈ C ( 1 ) ( S ) P,Q,R \in \mathscr C^{(1)}(S) P , Q , R ∈ C ( 1 ) ( S ) , ∂ S = L \partial S = L ∂ S = L 光滑或分段光滑, 则:
∮ L + P d x + Q d y + R d z = ∬ S + ( ∂ R ∂ y − ∂ Q ∂ z ) d y ∧ d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z ∧ d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x ∧ d y = ∬ S + det [ d y ∧ d z d z ∧ d x d x ∧ d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ] = ∬ S + det [ cos α cos β cos γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ] d S \begin{aligned}
\oint_{L^+} P\text{d}x + Q\text{d}y + R\text{d}z = \iint_{S^+} &\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \text{d}y\wedge\text{d}z \\
+& \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \text{d}z\wedge\text{d}x \\
+& \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \text{d}x\wedge\text{d}y \\
=\iint_{S^+} &\det \begin{bmatrix} \text{d}y\wedge\text{d}z & \text{d}z\wedge\text{d}x & \text{d}x\wedge\text{d}y \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \\ \end{bmatrix} \\
=\iint_{S^+} &\det \begin{bmatrix} \cos\alpha & \cos\beta & \cos\gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \\ \end{bmatrix} \;\text{d}S
\end{aligned}
∮ L + P d x + Q d y + R d z = ∬ S + + + = ∬ S + = ∬ S + ( ∂ y ∂ R − ∂ z ∂ Q ) d y ∧ d z ( ∂ z ∂ P − ∂ x ∂ R ) d z ∧ d x ( ∂ x ∂ Q − ∂ y ∂ P ) d x ∧ d y det ⎣ ⎡ d y ∧ d z ∂ x ∂ P d z ∧ d x ∂ y ∂ Q d x ∧ d y ∂ z ∂ R ⎦ ⎤ det ⎣ ⎡ cos α ∂ x ∂ P cos β ∂ y ∂ Q cos γ ∂ z ∂ R ⎦ ⎤ d S
其中L + L^+ L + 和S + S^+ S + 方向满足右手法则(大拇指指向S + S^+ S + 正法向量方向, 四指为L + L^+ L + 正方向).
更进一步, 事实上有:
∮ L + P d x = ∬ S + ∂ P ∂ z d z ∧ d x − ∂ P ∂ y d x ∧ d y ∮ L + Q d y = ∬ S + ∂ Q ∂ x d x ∧ d y − ∂ Q ∂ z d y ∧ d z ∮ L + R d z = ∬ S + ∂ R ∂ y d y ∧ d z − ∂ R ∂ x d z ∧ d x \begin{aligned}
\oint_{L^+} P\text{d}x &= \iint_{S^+} \frac{\partial P}{\partial z}\text{d}z\wedge\text{d}x - \frac{\partial P}{\partial y}\text{d}x\wedge\text{d}y \\
\oint_{L^+} Q\text{d}y &= \iint_{S^+} \frac{\partial Q}{\partial x}\text{d}x\wedge\text{d}y - \frac{\partial Q}{\partial z}\text{d}y\wedge\text{d}z \\
\oint_{L^+} R\text{d}z &= \iint_{S^+} \frac{\partial R}{\partial y}\text{d}y\wedge\text{d}z - \frac{\partial R}{\partial x}\text{d}z\wedge\text{d}x \\
\end{aligned}
∮ L + P d x ∮ L + Q d y ∮ L + R d z = ∬ S + ∂ z ∂ P d z ∧ d x − ∂ y ∂ P d x ∧ d y = ∬ S + ∂ x ∂ Q d x ∧ d y − ∂ z ∂ Q d y ∧ d z = ∬ S + ∂ y ∂ R d y ∧ d z − ∂ x ∂ R d z ∧ d x
特别地, 在二维特殊情况下有:
∮ L + P d x = − ∬ S + ∂ P ∂ y d x ∧ d y ∮ L + Q d y = ∬ S + ∂ Q ∂ x d x ∧ d y \begin{aligned}
\oint_{L^+} P\text{d}x &= - \iint_{S^+} \frac{\partial P}{\partial y}\text{d}x\wedge\text{d}y \\
\oint_{L^+} Q\text{d}y &= \iint_{S^+} \frac{\partial Q}{\partial x}\text{d}x\wedge\text{d}y \\
\end{aligned}
∮ L + P d x ∮ L + Q d y = − ∬ S + ∂ y ∂ P d x ∧ d y = ∬ S + ∂ x ∂ Q d x ∧ d y
与Green公式相吻合.
空间路径无关积分 :
若Ω ⊆ R 3 \Omega \subseteq \mathbb R^3 Ω ⊆ R 3 中任意一条简单封闭区县L L L 可以通过连续形变收缩为一点, 则称L L L 为零伦 的. L L L 为零伦的当且仅当L L L 为某分片光滑曲面S ⊆ Ω S \subseteq \Omega S ⊆ Ω 的边界曲线.
若区域Ω \Omega Ω 内任意简单闭曲线都为零伦的,则Ω \Omega Ω 为单连通体 .
若Ω ⊆ R 3 \Omega \subseteq \mathbb R^3 Ω ⊆ R 3 为单连通体, P , Q ∈ C ( 1 ) ( Ω ) P,Q \in \mathscr C^{(1)}(\Omega) P , Q ∈ C ( 1 ) ( Ω ) , L L L 光滑或分段光滑, 则以下命题等价:
∫ L ( A , B ) P d x + Q d y + R d z \int_{L(A,B)} P\text{d}x+Q\text{d}y+R\text{d}z ∫ L ( A , B ) P d x + Q d y + R d z 路径无关.
∃ U \exists U ∃ U s.t.: ∀ ( x , y , z ) ∈ Ω , d U = P d x + Q d y + R d z \forall (x,y,z) \in \Omega, \text{d}U = P\text{d}x + Q\text{d}y + R\text{d}z ∀ ( x , y , z ) ∈ Ω , d U = P d x + Q d y + R d z . 即:U ( x , y ) = ∫ ( x 0 , y 0 ) ( x , y ) P d x + Q d y + R d z U(x,y) = \int_{(x_0,y_0)}^{(x,y)} P\text{d}x + Q\text{d}y + R\text{d}z
U ( x , y ) = ∫ ( x 0 , y 0 ) ( x , y ) P d x + Q d y + R d z
∀ ( x , y , z ) ∈ Ω , ∂ R ∂ y = ∂ Q ∂ z \forall (x,y,z) \in \Omega, \frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z} ∀ ( x , y , z ) ∈ Ω , ∂ y ∂ R = ∂ z ∂ Q , ∂ P ∂ z = ∂ R ∂ x \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} ∂ z ∂ P = ∂ x ∂ R , ∂ Q ∂ x = ∂ P ∂ y \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} ∂ x ∂ Q = ∂ y ∂ P .
∀ L ⊆ D \forall L \subseteq D ∀ L ⊆ D , 若L L L 为光滑或分段光滑封闭曲线, 则∮ L P d x + Q d y + R d z = 0 \oint_L P\text{d}x + Q\text{d}y + R\text{d}z = 0 ∮ L P d x + Q d y + R d z = 0 .
场论
场 : Ω ⊆ R 3 \Omega \subseteq \mathbb R^3 Ω ⊆ R 3 , ∀ M ∈ Ω \forall M \in \Omega ∀ M ∈ Ω : 若∃ ! u = f ( M ) \exists! u = f(M) ∃ ! u = f ( M ) , 则f f f 为Ω \Omega Ω 上的数量场 ; 若∃ u ⃗ = F ⃗ ( M ) \exists \vec u = \vec F(M) ∃ u = F ( M ) , 则F ⃗ \vec F F 为Ω \Omega Ω 上的向量场 .
梯度场 : 若数量场U U U 在Ω \Omega Ω 上连续可微, 则∇ U ( M ) = ( U x ′ ( M ) , U y ′ ( M ) , U z ′ ( M ) ) \nabla U(M) = (U'_x(M),U'_y(M),U'_z(M)) ∇ U ( M ) = ( U x ′ ( M ) , U y ′ ( M ) , U z ′ ( M ) ) 为Ω \Omega Ω 上的向量场, 即为u u u 的梯度场. ∇ \nabla ∇ 又称哈密顿算子 :
∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) \nabla = \left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)
∇ = ( ∂ x ∂ , ∂ y ∂ , ∂ z ∂ )
注意U U U 为数量场而∇ U \nabla U ∇ U 为向量场, 不能写作∇ ⋅ U \nabla \cdot U ∇ ⋅ U , 后者中U U U 为向量场而∇ ⋅ U \nabla \cdot U ∇ ⋅ U 为数量场(散度场).
任意连续可导数量场存在对应向量场(梯度场), 但并非所有连续向量场存在对应数量场, 其存在的充要条件是势函数存在(积分路径无关).
保守场 : 若向量场F ⃗ \vec F F 在Ω \Omega Ω 上积分路径无关, 即∫ L ( A , B ) F ⃗ ⋅ τ ⃗ = U ( B ) − U ( A ) \int_{L(A,B)} \vec F \cdot \vec \tau = U(B)-U(A) ∫ L ( A , B ) F ⋅ τ = U ( B ) − U ( A ) , 则F ⃗ \vec F F 为Ω \Omega Ω 上的保守场.
有势场 : 若向量场F ⃗ \vec F F 在Ω \Omega Ω 上存在可微函数U U U , 使得F ⃗ = ∇ U \vec F = \nabla U F = ∇ U , 则F ⃗ \vec F F 为Ω \Omega Ω 上的有势场.
F ⃗ \vec F F 为有势场 ⇔ \Leftrightarrow ⇔ F ⃗ \vec F F 为保守场.
散度场 : 若向量场F ⃗ ( M ) = ( P ( M ) , Q ( M ) , R ( M ) ) \vec F(M) = (P(M),Q(M),R(M)) F ( M ) = ( P ( M ) , Q ( M ) , R ( M ) ) 在Ω \Omega Ω 上连续可微, 则:
div F ⃗ = P x ′ + Q y ′ + R z ′ = ∇ ⋅ F ⃗ \text{div} \vec F = P'_x+Q'_y+R'_z = \nabla \cdot \vec F
div F = P x ′ + Q y ′ + R z ′ = ∇ ⋅ F
为Ω \Omega Ω 上的数量场, 即F ⃗ \vec F F 的散度场.
通量/流量 : S + S^+ S + 为连续可微向量场F ⃗ \vec F F 中的定向曲面, n ⃗ \vec n n 为S + S^+ S + 单位法向量, 则F ⃗ \vec F F 通过曲面S S S 向n ⃗ \vec n n 方向的通量/流量为:
∬ S + F ⃗ ⋅ n ⃗ d S \iint_{S^+} \vec F \cdot \vec n \text{d}S
∬ S + F ⋅ n d S
注意到根据Gauss公式, F ⃗ \vec F F 在Ω \Omega Ω 上连续可微, 故:
∯ ∂ Ω + F ⃗ ⋅ n ⃗ d S = ∭ Ω div F ⃗ d V \oiint_{\partial\Omega^+} \vec F \cdot \vec n \;\text{d}S = \iiint_\Omega \text{div}\vec F \;\text{d}V
∬ ∂ Ω + F ⋅ n d S = ∭ Ω div F d V
且根据积分中值定理, ∃ ξ ∈ Ω \exists \xi \in \Omega ∃ ξ ∈ Ω :
∯ ∂ Ω + F ⃗ ⋅ n ⃗ d S = ∭ Ω div F ⃗ d V = div F ⃗ ( ξ ) ⋅ V ( Ω ) \oiint_{\partial\Omega^+} \vec F \cdot \vec n \;\text{d}S = \iiint_\Omega \text{div}\vec F \;\text{d}V = \text{div}\vec F(\xi) \cdot V(\Omega)
∬ ∂ Ω + F ⋅ n d S = ∭ Ω div F d V = div F ( ξ ) ⋅ V ( Ω )
故散度场可以定义为, 对于以M M M 为球心的球D D D :
div F ⃗ ( M ) = lim V ( D ) → 0 1 V ( D ) ∯ ∂ D + F ⃗ ⋅ n ⃗ d S \text{div}\vec F(M) = \lim_{V(D)\to0}\frac{1}{V(D)}\oiint_{\partial D^+} \vec F \cdot \vec n\;\text{d}S
div F ( M ) = V ( D ) → 0 lim V ( D ) 1 ∬ ∂ D + F ⋅ n d S
无源场 : 若div F ⃗ ( M ) ≠ 0 \text{div}\vec F(M) \ne 0 div F ( M ) = 0 , 称F ⃗ \vec F F 在M M M 有流源 ; 若div F ⃗ ( M ) > 0 \text{div}\vec F(M) \gt 0 div F ( M ) > 0 , 称F ⃗ \vec F F 在M M M 有正流源 ; 若div F ⃗ ( M ) < 0 \text{div}\vec F(M) \lt 0 div F ( M ) < 0 , 称F ⃗ \vec F F 在M M M 有负流源 . 若∀ M ∈ Ω \forall M \in \Omega ∀ M ∈ Ω , div F ⃗ ( M ) = 0 \text{div}\vec F(M) = 0 div F ( M ) = 0 , 则F ⃗ \vec F F 为Ω \Omega Ω 上的无源场.
旋度场 : 若向量场F ⃗ ( M ) = ( P ( M ) , Q ( M ) , R ( M ) ) \vec F(M) = (P(M),Q(M),R(M)) F ( M ) = ( P ( M ) , Q ( M ) , R ( M ) ) 在Ω \Omega Ω 上连续可微, 则:
rot F ⃗ = ( ∂ P ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y ) = det [ i ⃗ j ⃗ k ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ] = ∇ × F ⃗ \text{rot}\vec F = \left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x},\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) = \det\begin{bmatrix}\vec i & \vec j & \vec k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \\ \end{bmatrix} = \nabla \times \vec F
rot F = ( ∂ y ∂ P − ∂ z ∂ Q , ∂ z ∂ P − ∂ x ∂ R , ∂ x ∂ Q − ∂ y ∂ P ) = det ⎣ ⎡ i ∂ x ∂ P j ∂ y ∂ Q k ∂ z ∂ R ⎦ ⎤ = ∇ × F
为Ω \Omega Ω 上的向量场, 即为F ⃗ \vec F F 的旋度场.
环量/环流量 : L + L^+ L + 为向量场F ⃗ \vec F F 中光滑或分段光滑的有向闭合曲线, τ ⃗ \vec \tau τ 为L + L^+ L + 单位切向量, 则F ⃗ \vec F F 沿L + L^+ L + 的环量/环流量为:
∮ L + F ⃗ ⋅ τ ⃗ d ℓ \oint_{L^+} \vec F \cdot \vec \tau \text{d}\ell
∮ L + F ⋅ τ d ℓ
注意到根据Stokes公式:
∮ L + F ⃗ ⋅ τ ⃗ d ℓ = ∬ Σ + rot F ⃗ ⋅ n ⃗ d Σ \oint_{L^+} \vec F \cdot \vec \tau \text{d}\ell = \iint_{\Sigma^+} \text{rot}\vec F \cdot \vec n\;\text{d}\Sigma
∮ L + F ⋅ τ d ℓ = ∬ Σ + rot F ⋅ n d Σ
且根据积分中值定理, ∃ ξ ∈ Σ + \exists \xi \in \Sigma^+ ∃ ξ ∈ Σ + :
∮ L + F ⃗ ⋅ τ ⃗ d ℓ = ∬ Σ + rot F ⃗ ⋅ n ⃗ d S = rot F ⃗ ( ξ ) ⋅ n ⃗ ⋅ S ( Σ ) \oint_{L^+} \vec F \cdot \vec \tau \text{d}\ell = \iint_{\Sigma^+} \text{rot}\vec F \cdot \vec n\;\text{d}S = \text{rot}\vec F(\xi) \cdot \vec n \cdot S(\Sigma)
∮ L + F ⋅ τ d ℓ = ∬ Σ + rot F ⋅ n d S = rot F ( ξ ) ⋅ n ⋅ S ( Σ )
故旋度场可以定义为, 对于以M M M 为圆心的圆D D D :
rot F ⃗ ( M ) ⋅ n ⃗ = lim S ( D ) → 0 1 S ( D ) ∮ ∂ D + F ⃗ ⋅ τ ⃗ d ℓ \text{rot}\vec F(M) \cdot \vec n = \lim_{S(D)\to0}\frac{1}{S(D)}\oint_{\partial D^+} \vec F \cdot \vec \tau\;\text{d}\ell
rot F ( M ) ⋅ n = S ( D ) → 0 lim S ( D ) 1 ∮ ∂ D + F ⋅ τ d ℓ
无旋场 : 故rot F ⃗ ( M ) ⋅ n ⃗ \text{rot}\vec F(M) \cdot \vec n rot F ( M ) ⋅ n 表示F ⃗ \vec F F 在M M M 处环绕n ⃗ \vec n n 的方向旋量 , 则rot F ⃗ ( M ) \text{rot}\vec F(M) rot F ( M ) 的三个方向分量分别表示F ⃗ \vec F F 在M M M 处环绕x , y , z x,y,z x , y , z 三个坐标的方向旋量. 若∥ rot F ⃗ ( M ) ∥ ≠ 0 \| \text{rot}\vec F(M) \| \ne 0 ∥ rot F ( M ) ∥ = 0 , 则M M M 为F ⃗ \vec F F 的旋涡 , ∥ rot F ⃗ ( M ) ∥ \| \text{rot}\vec F(M) \| ∥ rot F ( M ) ∥ 越大旋转越快. 若∀ M ∈ Ω \forall M \in \Omega ∀ M ∈ Ω , ∥ rot F ⃗ ( M ) ∥ = 0 \| \text{rot}\vec F(M) \| = 0 ∥ rot F ( M ) ∥ = 0 , 则F ⃗ \vec F F 为Ω \Omega Ω 上的无旋场.
调和场 : 若向量场F ⃗ \vec F F 在Ω \Omega Ω 上同时为有势场和无源场, 则F ⃗ \vec F F 为Ω \Omega Ω 上的调和场.
F ⃗ \vec F F 在Ω \Omega Ω 上同时为有势场和无源场, 故:
0 = div F ⃗ = ∇ ⋅ F ⃗ = ∇ ⋅ ( ∇ U ) = ( ∇ ⋅ ∇ ) U = Δ U 0 = \text{div}\vec F = \nabla \cdot \vec F = \nabla \cdot (\nabla U) = (\nabla \cdot \nabla) U = \Delta U
0 = div F = ∇ ⋅ F = ∇ ⋅ ( ∇ U ) = ( ∇ ⋅ ∇ ) U = Δ U
其中Δ \Delta Δ 为拉普拉斯算子 :
Δ = ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
Δ = ∇ 2 = ∂ x 2 ∂ 2 + ∂ y 2 ∂ 2 + ∂ z 2 ∂ 2
注意若U U U 为数量场则Δ U \Delta U Δ U 也为数量场, 若U U U 为向量场则Δ U \Delta U Δ U 也为向量场, 不能写作Δ ⋅ U \Delta \cdot U Δ ⋅ U , 后者无意义.
拉普拉斯方程 : Δ U = 0 \Delta U = 0 Δ U = 0 为拉普拉斯方程, 满足次方程的解函数U U U 称为调和函数 .
场的联合运算 : 若数量场U U U 在Ω \Omega Ω 上二阶连续可微, 向量场F ⃗ \vec F F 在Ω \Omega Ω 上二阶连续可微, 则:
div ( rot F ⃗ ) = ∇ ⋅ ( ∇ × F ⃗ ) = F ⃗ ⋅ ( ∇ × ∇ ) ⏟ = 0 ⃗ = 0 (1) \text{div}(\text{rot}\vec F) = \nabla \cdot (\nabla \times \vec F) = \vec F \cdot \underbrace{(\nabla \times \nabla)}_{=\vec 0} = 0 \tag{1}
div ( rot F ) = ∇ ⋅ ( ∇ × F ) = F ⋅ = 0 ( ∇ × ∇ ) = 0 ( 1 )
rot ( ∇ U ) = ∇ × ( ∇ U ) = ( ∇ × ∇ ) ⏟ = 0 ⃗ U = 0 ⃗ (2) \text{rot}(\nabla U) = \nabla \times (\nabla U) = \underbrace{(\nabla \times \nabla)}_{=\vec 0} U = \vec 0 \tag{2}
rot ( ∇ U ) = ∇ × ( ∇ U ) = = 0 ( ∇ × ∇ ) U = 0 ( 2 )
div ( ∇ U ) = ∇ ⋅ ( ∇ U ) = ( ∇ ⋅ ∇ ) U = Δ U (3) \text{div}(\nabla U) = \nabla \cdot (\nabla U) = (\nabla \cdot \nabla) U = \Delta U \tag{3}
div ( ∇ U ) = ∇ ⋅ ( ∇ U ) = ( ∇ ⋅ ∇ ) U = Δ U ( 3 )
∇ ( div F ⃗ ) − rot ( rot F ⃗ ) = ( ∇ ⋅ F ⃗ ) ∇ − ∇ × ( ∇ × F ⃗ ) ⏟ a ⃗ × ( b ⃗ × c ⃗ ) = ( a ⃗ ⋅ c ⃗ ) b ⃗ − ( a ⃗ ⋅ b ⃗ ) c ⃗ = ( ∇ ⋅ F ⃗ ) ∇ − ( ( ∇ ⋅ F ⃗ ) ∇ − ( ∇ ⋅ ∇ ) F ⃗ ) = ( ∇ ⋅ ∇ ) F ⃗ = Δ F ⃗ (4) \begin{aligned}
\nabla(\text{div}\vec F) - \text{rot}(\text{rot}\vec F) &= (\nabla \cdot \vec F)\nabla - \underbrace{\nabla \times (\nabla \times \vec F)}_{\vec a \times (\vec b \times \vec c) = (\vec a \cdot \vec c)\vec b - (\vec a \cdot \vec b)\vec c} \\
&= (\nabla \cdot \vec F)\nabla - \Big( (\nabla \cdot \vec F)\nabla - (\nabla \cdot \nabla) \vec F \Big) \\
&= (\nabla \cdot \nabla) \vec F \\
&= \Delta \vec F \\
\end{aligned} \tag{4}
∇ ( div F ) − rot ( rot F ) = ( ∇ ⋅ F ) ∇ − a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c ∇ × ( ∇ × F ) = ( ∇ ⋅ F ) ∇ − ( ( ∇ ⋅ F ) ∇ − ( ∇ ⋅ ∇ ) F ) = ( ∇ ⋅ ∇ ) F = Δ F ( 4 )
由(1)., 旋度场均为无源场.
由(2)., 梯度场均为无旋场.
由(2)., F ⃗ \vec F F 为有势场/保守场 ⇔ \Leftrightarrow ⇔ F ⃗ \vec F F 为无旋场, 即∥ rot F ⃗ ∥ = 0 \| \text{rot}\vec F \| = 0 ∥ rot F ∥ = 0 .
平面通量 : L + L^+ L + 为连续可微向量场F ⃗ \vec F F 中的定向曲线, n ⃗ \vec n n 为L + L^+ L + 在平面内的单位法向量, 则F ⃗ \vec F F 穿过曲线L L L 的通量为:
∫ L + F ⃗ ⋅ n ⃗ d ℓ \int_{L^+} \vec F \cdot \vec n \;\text{d}\ell
∫ L + F ⋅ n d ℓ
平面环量 : 与空间环量一致.
平面散度与旋度 :
∮ ∂ D + F ⃗ ⋅ n ⃗ d ℓ = ∬ D div F ⃗ d x d y \oint_{\partial D^+} \vec F \cdot \vec n \;\text{d}\ell = \iint_D \text{div}\vec F\;\text{d}x\text{d}y
∮ ∂ D + F ⋅ n d ℓ = ∬ D div F d x d y
∮ ∂ D + F ⃗ ⋅ τ ⃗ d ℓ = ∬ D rot F ⃗ d x d y \oint_{\partial D^+} \vec F \cdot \vec \tau \;\text{d}\ell = \iint_D \text{rot}\vec F\;\text{d}x\text{d}y
∮ ∂ D + F ⋅ τ d ℓ = ∬ D rot F d x d y
级数
级数 : 无穷项数列求和:
S = u 1 + u 2 + u 3 + ⋯ + u n + ⋯ = ∑ n = 1 ∞ u n S = u_1+u_2+u_3+\cdots+u_n+\cdots = \sum_{n=1}^{\infty} u_n
S = u 1 + u 2 + u 3 + ⋯ + u n + ⋯ = n = 1 ∑ ∞ u n
其中u n u_n u n 为通项/一般项 , 若∀ i , u i \forall i, u_i ∀ i , u i 不含有参数变量, 则该级数为**(常数项)级数**. 正项级数、负项级数、交错级数、任意项级数等都为常数项级数的特殊情况.
部分和 : 级数的前n n n 项部分和为:
S n = u 1 + u 2 + u 3 + ⋯ + u n = ∑ i = 1 n u i S_n = u_1+u_2+u_3+\cdots+u_n = \sum_{i=1}^n u_i
S n = u 1 + u 2 + u 3 + ⋯ + u n = i = 1 ∑ n u i
级数收敛当且仅当部分和数列收敛, 且此时两者相等.
S = ∑ n = 1 ∞ u n = lim n → ∞ S n S = \sum_{n=1}^{\infty} u_n = \lim_{n\to\infty} S_n
S = n = 1 ∑ ∞ u n = n → ∞ lim S n
级数收敛柯西原理 : 又数列收敛柯西原理和级数收敛的部分和等价条件可得, 级数收敛当且仅当: ∀ ε > 0 , ∃ N > 0 , ∀ n > N , p > 0 \forall \varepsilon \gt 0, \exists N \gt 0, \forall n \gt N, p \gt 0 ∀ ε > 0 , ∃ N > 0 , ∀ n > N , p > 0 , 都有:
∣ u n + 1 + ⋯ + u n + p ∣ < ε \vert u_{n+1}+\cdots+u_{n+p} \vert \lt \varepsilon
∣ u n + 1 + ⋯ + u n + p ∣ < ε
S S S 收敛 ⇒ \Rightarrow ⇒ 通项u n u_n u n 收敛至0 0 0 .
改变S S S 的有限项不影响S S S 的敛散性(但收敛时会影响级数值, 这与数列极限不同).
余合 : r n = S − S n r_n = S-S_n r n = S − S n 为级数S S S 的第n n n 项余和.
级数收敛当且仅当余和收敛至0 0 0 .
S = lim n → ∞ r n = lim n → ∞ S − S n = S − lim n → ∞ S n = 0 S=\lim_{n\to\infty} r_n = \lim_{n\to\infty} S-S_n = S-\lim_{n\to\infty}S_n = 0
S = n → ∞ lim r n = n → ∞ lim S − S n = S − n → ∞ lim S n = 0
收敛级数的运算 : 若级数∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n ∑ n = 1 ∞ u n 收敛到A A A , 级数∑ n = 1 ∞ v n \sum_{n=1}^{\infty} v_n ∑ n = 1 ∞ v n 收敛到B B B , ∀ α , β ∈ R \forall \alpha,\beta \in \mathbb R ∀ α , β ∈ R , 0 = n 0 < n 1 < n 2 < ⋯ 0 = n_0 \lt n_1 \lt n_2 \lt \cdots 0 = n 0 < n 1 < n 2 < ⋯ , 则:
∑ n = 1 ∞ ( α u n + β v n ) = α A + β B ∑ k = 1 ∞ ( u n k − 1 + 1 + ⋯ + u n k ) = A \begin{aligned}
\sum_{n=1}^{\infty}(\alpha u_n + \beta v_n) &= \alpha A + \beta B \\
\sum_{k=1}^{\infty}(u_{n_{k-1}+1}+\cdots+u_{n_k}) &= A
\end{aligned}
n = 1 ∑ ∞ ( α u n + β v n ) k = 1 ∑ ∞ ( u n k − 1 + 1 + ⋯ + u n k ) = α A + β B = A
注意新级数∑ k = 1 ∞ ( u n k − 1 + 1 + ⋯ + u n k ) \sum_{k=1}^{\infty}(u_{n_{k-1}+1}+\cdots+u_{n_k}) ∑ k = 1 ∞ ( u n k − 1 + 1 + ⋯ + u n k ) 收敛不保证原级数收敛(e.g.: 1 , − 1 1,-1 1 , − 1 交错数列). 若收敛的新级数中每一项内符号相同,则原级数收敛.
同号级数 : ∀ n ≥ 1 , u n ≥ 0 \forall n \ge 1, u_n \ge 0 ∀ n ≥ 1 , u n ≥ 0 , 则∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 为正项级数 . ∀ n ≥ 1 , u n ≤ 0 \forall n \ge 1, u_n \le 0 ∀ n ≥ 1 , u n ≤ 0 , 则∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 为负项级数 . 不失一般性, 通常仅考虑正项级数即可.
正项级数的级数部分和数列S n S_n S n 单调递增, 故正项级数收敛当且仅当S n S_n S n .
正项级数∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 与∑ n = 1 ∞ v n \sum_{n=1}^\infty v_n ∑ n = 1 ∞ v n 满足∃ N ∈ N + \exists N \in \mathbb N_+ ∃ N ∈ N + s.t.: ∀ n > N \forall n \gt N ∀ n > N , u n ≤ c v n u_n \le cv_n u n ≤ c v n , 其中c > 0 c \gt 0 c > 0 . 则:
∑ n = 1 ∞ v n \sum_{n=1}^\infty v_n ∑ n = 1 ∞ v n 收敛 ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 收敛.
∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 发散 ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ v n \sum_{n=1}^\infty v_n ∑ n = 1 ∞ v n 发散.
e.g.:
广义调和级数/p p p -级数 :
ζ ( p ) = ∑ n = 1 ∞ 1 n p \zeta(p) = \sum_{n=1}^\infty \frac{1}{n^p}
ζ ( p ) = n = 1 ∑ ∞ n p 1
因为有:
1 p − 1 = ∫ 1 + ∞ 1 x p d x < ζ ( p ) < 1 + ∫ 1 + ∞ 1 x p d x = p p − 1 \frac{1}{p-1} = \int_1^{+\infty} \frac{1}{x^p} \;\text{d}x \lt \zeta(p) \lt 1+\int_1^{+\infty} \frac{1}{x^p} \;\text{d}x = \frac{p}{p-1}
p − 1 1 = ∫ 1 + ∞ x p 1 d x < ζ ( p ) < 1 + ∫ 1 + ∞ x p 1 d x = p − 1 p
故由于∫ 1 + ∞ 1 x p d x \int_1^{+\infty} \frac{1}{x^p} \;\text{d}x ∫ 1 + ∞ x p 1 d x 收敛当且仅当p > 1 p \gt 1 p > 1 , 进而p p p -级数收敛当且仅当p > 1 p \gt 1 p > 1 .
比较判别法 :
正项级数∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 与∑ n = 1 ∞ v n \sum_{n=1}^\infty v_n ∑ n = 1 ∞ v n 满足lim n → ∞ u n v n = k \lim_{n\to\infty}\frac{u_n}{v_n} = k lim n → ∞ v n u n = k , 则:
∑ n = 1 ∞ v n \sum_{n=1}^\infty v_n ∑ n = 1 ∞ v n 收敛, 0 ≤ k < + ∞ 0 \le k \lt +\infty 0 ≤ k < + ∞ ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 收敛.
∑ n = 1 ∞ v n \sum_{n=1}^\infty v_n ∑ n = 1 ∞ v n 发散, 0 < k ≤ + ∞ 0 \lt k \le +\infty 0 < k ≤ + ∞ ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 发散.
比阶判别法 :
对于正项级数∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n , 若存在p p p 使得lim n → ∞ n p u n = k \lim_{n\to\infty} n^p u_n = k lim n → ∞ n p u n = k .
若p > 1 p \gt 1 p > 1 , 0 ≤ k < + ∞ 0 \le k \lt +\infty 0 ≤ k < + ∞ ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 收敛.
若p ≤ 1 p \le 1 p ≤ 1 , 0 < k ≤ + ∞ 0 \lt k \le +\infty 0 < k ≤ + ∞ ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 发散.
比值判别法 :
∑ n = 1 ∞ q n \sum_{n=1}^\infty q^n
n = 1 ∑ ∞ q n
几何级数收敛当且仅当∣ q ∣ < 1 \vert q \vert \lt 1 ∣ q ∣ < 1 . 故对于正项级数∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n , 若lim n → ∞ u n + 1 u n = c \lim_{n\to\infty}\frac{u_{n+1}}{u_n} = c lim n → ∞ u n u n + 1 = c , 其中0 ≤ c ≤ + ∞ 0 \le c \le +\infty 0 ≤ c ≤ + ∞ , 则:
c < 1 c \lt 1 c < 1 ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 收敛.
c > 1 c \gt 1 c > 1 ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 发散.
c = 1 c = 1 c = 1 , 无法判断.
特别地, 即使lim n → ∞ u n + 1 u n \lim_{n\to\infty}\frac{u_{n+1}}{u_n} lim n → ∞ u n u n + 1 不存在, 若存在对应上界和下界满足上述条件, 也可用于判别.
根式判别法(柯西判别法) :
对于正项级数∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n , 若lim n → ∞ u n n = c \lim_{n\to\infty}\sqrt[n]{u_n} = c lim n → ∞ n u n = c , 其中0 ≤ c ≤ + ∞ 0 \le c \le +\infty 0 ≤ c ≤ + ∞ , 则:
c < 1 c \lt 1 c < 1 ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 收敛.
c > 1 c \gt 1 c > 1 ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 发散.
c = 1 c = 1 c = 1 , 无法判断.
拉贝判别法 :
对于正项级数∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n , 若存在μ \mu μ 使得n → ∞ n\to\infty n → ∞ 时有u n u n + 1 = 1 + μ n + o ( 1 n ) \frac{u_n}{u_{n+1}} = 1 + \frac{\mu}{n} + o(\frac{1}{n}) u n + 1 u n = 1 + n μ + o ( n 1 ) , 则:
μ > 1 \mu \gt 1 μ > 1 ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 收敛.
μ < 1 \mu \lt 1 μ < 1 ⇒ \Rightarrow ⇒ ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 发散.
μ = 1 \mu = 1 μ = 1 , 无法判断.
积分判别法 :
对于正项级数∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n , 若∃ f ( x ) ∈ C [ 1 , + ∞ ) \exists f(x) \in \mathscr C[1,+\infty) ∃ f ( x ) ∈ C [ 1 , + ∞ ) s.t.: ∀ n ∈ N + , f ( n ) = u n \forall n \in \mathbb N_+, f(n) = u_n ∀ n ∈ N + , f ( n ) = u n 且f ( x ) f(x) f ( x ) 为单调递减非负函数, 则: ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 收敛当且仅当∫ 1 + ∞ f ( x ) d x \int_1^{+\infty} f(x) \;\text{d}x ∫ 1 + ∞ f ( x ) d x 收敛. 特别地,
∫ 1 + ∞ f ( x ) d x ≤ ∑ n = 1 ∞ u n ≤ u 1 + ∫ 1 + ∞ f ( x ) d x \int_1^{+\infty} f(x)\;\text{d}x \le \sum_{n=1}^\infty u_n \le u_1 + \int_1^{+\infty} f(x)\;\text{d}x
∫ 1 + ∞ f ( x ) d x ≤ n = 1 ∑ ∞ u n ≤ u 1 + ∫ 1 + ∞ f ( x ) d x
u n u_n u n 非负单调递减, 则∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 收敛当且仅当∑ n = 1 ∞ 2 n u 2 n \sum_{n=1}^\infty 2^n u_{2^n} ∑ n = 1 ∞ 2 n u 2 n 收敛.
Proof:
记S n = ∑ k = 1 n u k S_n = \sum_{k=1}^n u_k S n = ∑ k = 1 n u k , P n = ∑ k = 1 n 2 k u 2 k P_n = \sum_{k=1}^n 2^k u_{2^k} P n = ∑ k = 1 n 2 k u 2 k , 则:
S 2 n + 1 − 1 = ∑ k = 0 n ∑ j = 2 k 2 k + 1 − 1 u j ≤ ∑ k = 0 n 2 k u 2 k = u 1 + P n S_{2^{n+1}-1} = \sum_{k=0}^n \sum_{j=2^k}^{2^{k+1}-1} u_j \le \sum_{k=0}^n 2^ku_{2^k} = u_1 + P_n
S 2 n + 1 − 1 = k = 0 ∑ n j = 2 k ∑ 2 k + 1 − 1 u j ≤ k = 0 ∑ n 2 k u 2 k = u 1 + P n
S 2 n + 1 = ∑ k = 0 n ∑ j = 2 k + 1 2 k + 1 u j ≥ ∑ k = 0 n 2 k u 2 k + 1 = u 1 + 1 2 P n + 1 S_{2^{n+1}} = \sum_{k=0}^n \sum_{j=2^k+1}^{2^{k+1}} u_j \ge \sum_{k=0}^n 2^ku_{2^{k+1}} = u_1 + \frac{1}{2}P_{n+1}
S 2 n + 1 = k = 0 ∑ n j = 2 k + 1 ∑ 2 k + 1 u j ≥ k = 0 ∑ n 2 k u 2 k + 1 = u 1 + 2 1 P n + 1
莱布尼茨判别法 :
u n u_n u n 非负单调递减趋于0 0 0 , 则S = ∑ n = 1 ∞ ( − 1 ) n − 1 u n S = \sum_{n=1}^\infty (-1)^{n-1}u_n S = ∑ n = 1 ∞ ( − 1 ) n − 1 u n 必定收敛: u 1 − u 2 ≤ S ≤ u 1 u_1-u_2 \le S \le u_1 u 1 − u 2 ≤ S ≤ u 1 . 且部分和数列S n = ∑ k = 1 n ( − 1 ) k − 1 u k S_n = \sum_{k=1}^n (-1)^{k-1}u_k S n = ∑ k = 1 n ( − 1 ) k − 1 u k 满足u n + 1 − u n + 2 ≤ ∣ S − S n ∣ ≤ u n + 1 u_{n+1}-u_{n+2} \le \vert S-S_n \vert \le u_{n+1} u n + 1 − u n + 2 ≤ ∣ S − S n ∣ ≤ u n + 1 . 注意莱布尼茨判别法仅仅是充分条件.
任意项级数 : 任意一项都可以为正项或负项的级数. 若∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^\infty \vert u_n \vert ∑ n = 1 ∞ ∣ u n ∣ 收敛, 则原任意项级数∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 绝对收敛 ; 若原任意项级数收敛但∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^\infty \vert u_n \vert ∑ n = 1 ∞ ∣ u n ∣ 不收敛, 则原任意项级数条件收敛 .
定义任意项级数的正项部分u n + = max { u n , 0 } u_n^+ = \max\lbrace u_n,0 \rbrace u n + = max { u n , 0 } 和负项部分u n − = max { − u n , 0 } u_n^- = \max\lbrace -u_n,0 \rbrace u n − = max { − u n , 0 } . 则:
∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 绝对收敛当且仅当∑ n = 1 ∞ u n + \sum_{n=1}^\infty u_n^+ ∑ n = 1 ∞ u n + 和∑ n = 1 ∞ u n − \sum_{n=1}^\infty u_n^- ∑ n = 1 ∞ u n − 均收敛.
∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 条件收敛则∑ n = 1 ∞ u n + \sum_{n=1}^\infty u_n^+ ∑ n = 1 ∞ u n + 和∑ n = 1 ∞ u n − \sum_{n=1}^\infty u_n^- ∑ n = 1 ∞ u n − 均发散(单调递增无上界).
Proof:
(1) ⇒ \Rightarrow ⇒ 显然: 0 ≤ u n + ≤ ∣ u n ∣ 0 \le u_n^+ \le \vert u_n \vert 0 ≤ u n + ≤ ∣ u n ∣ , 0 ≤ u n − ≤ ∣ u n ∣ 0 \le u_n^- \le \vert u_n \vert 0 ≤ u n − ≤ ∣ u n ∣ .
(1) ⇐ \Leftarrow ⇐ 显然: ∑ n = 1 ∞ ∣ u n ∣ = ∑ n = 1 ∞ u n + + u n − \sum_{n=1}^\infty \vert u_n \vert = \sum_{n=1}^\infty u_n^++u_n^- ∑ n = 1 ∞ ∣ u n ∣ = ∑ n = 1 ∞ u n + + u n − .
(2), 根据(1), 条件收敛则至少一个发散, 不妨假设∑ n = 1 ∞ u n − \sum_{n=1}^\infty u_n^- ∑ n = 1 ∞ u n − 发散. 若∑ n = 1 ∞ u n + \sum_{n=1}^\infty u_n^+ ∑ n = 1 ∞ u n + 收敛, 则∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑ n = 1 ∞ u n 必定发散, 则不条件收敛.
绝对收敛级数满足交换律.
Proof:
绝对收敛级数的正项部分级数和负项部分级数均收敛, 收敛同号级数满足交换律.
黎曼定理 :
条件收敛级数必定不满足交换律: 必定存在一个重排列方法使其发散; 且∀ A ∈ R \forall A \in \mathbb R ∀ A ∈ R , 存在一个重排列方法使其收敛到A A A .
Proof:
注意到条件收敛级数的正项部分级数和负项部分级数均发散.
∀ M ∈ R \forall M \in \mathbb R ∀ M ∈ R , 可以取min k 1 \min k_1 min k 1 s.t.: ∑ j = 1 k 1 u j + ≥ M \sum_{j=1}^{k_1} u_j^+ \ge M ∑ j = 1 k 1 u j + ≥ M , 再取max k 2 \max k_2 max k 2 s.t.: ∑ j = 1 k 1 u j + − ∑ j = 1 k 2 u j − ≥ M \sum_{j=1}^{k_1} u_j^+ - \sum_{j=1}^{k_2} u_j^- \ge M ∑ j = 1 k 1 u j + − ∑ j = 1 k 2 u j − ≥ M , 以此类推, 故级数发散.
∀ A ∈ R \forall A \in \mathbb R ∀ A ∈ R , 可以取min k 1 \min k_1 min k 1 s.t.: ∑ j = 1 k 1 u j + ≥ A \sum_{j=1}^{k_1} u_j^+ \ge A ∑ j = 1 k 1 u j + ≥ A , 再取min k 2 \min k_2 min k 2 s.t.: ∑ j = 1 k 1 u j + − ∑ j = 1 k 2 u j − ≤ A \sum_{j=1}^{k_1} u_j^+ - \sum_{j=1}^{k_2} u_j^- \le A ∑ j = 1 k 1 u j + − ∑ j = 1 k 2 u j − ≤ A , 以此类推, 故级数收敛到A A A .
级数乘法 : 级数乘法有两种定义:
级数对角线加法(卷积):
c n = ∑ i = 1 n a i b n + 1 − j ∑ k = 1 n c k = ∑ i + j ≤ n + 1 a i b j \begin{aligned}
c_n &= \sum_{i=1}^n a_ib_{n+1-j} \\
\sum_{k=1}^n c_k &= \sum_{i+j \le n+1} a_ib_j \\
\end{aligned}
c n k = 1 ∑ n c k = i = 1 ∑ n a i b n + 1 − j = i + j ≤ n + 1 ∑ a i b j
方块加法(多项式乘法):
c n = ∑ i = 1 n ( a i b n + a n b i ) ∑ k = 1 n c k = ( ∑ i = 1 n a i ) ⋅ ( ∑ j = 1 n b j ) \begin{aligned}
c_n &= \sum_{i=1}^n (a_ib_n + a_nb_i) \\
\sum_{k=1}^n c_k &= \left(\sum_{i=1}^n a_i\right) \cdot \left(\sum_{j=1}^n b_j\right) \\
\end{aligned}
c n k = 1 ∑ n c k = i = 1 ∑ n ( a i b n + a n b i ) = ( i = 1 ∑ n a i ) ⋅ ( j = 1 ∑ n b j )
柯西定理 :
∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n ∑ n = 1 ∞ a n 与∑ n = 1 ∞ b n \sum_{n=1}^\infty b_n ∑ n = 1 ∞ b n 绝对收敛, 则任意顺序相加的级数∑ i , j ∞ a i b j \sum_{i,j}^\infty a_ib_j ∑ i , j ∞ a i b j 均绝对收敛到级数乘法结果.
Proof:
考虑绝对值方块相加部分和P n ′ = ( ∑ k = 1 n ∣ a k ∣ ) ⋅ ( ∑ k = 1 n ∣ b k ∣ ) P_n' = \left(\sum_{k=1}^n \vert a_k \vert \right) \cdot \left(\sum_{k=1}^n \vert b_k \vert \right) P n ′ = ( ∑ k = 1 n ∣ a k ∣ ) ⋅ ( ∑ k = 1 n ∣ b k ∣ ) , 故其对应原级数P n = ( ∑ k = 1 n a k ) ⋅ ( ∑ k = 1 n b k ) P_n = \left(\sum_{k=1}^n a_k \right) \cdot \left(\sum_{k=1}^n b_k \right) P n = ( ∑ k = 1 n a k ) ⋅ ( ∑ k = 1 n b k ) 绝对收敛. 而绝对收敛数列满足交换律: ( ∑ k = 1 n a k ) ⋅ ( ∑ k = 1 n b k ) = ∑ i , j ∞ a i b j \left(\sum_{k=1}^n a_k \right) \cdot \left(\sum_{k=1}^n b_k \right) = \sum_{i,j}^\infty a_ib_j ( ∑ k = 1 n a k ) ⋅ ( ∑ k = 1 n b k ) = ∑ i , j ∞ a i b j .
Dirichlet判别法 :
u n u_n u n 单调递减趋于0 0 0 , ∑ n = 1 ∞ v n \sum_{n=1}^\infty v_n ∑ n = 1 ∞ v n 部分和有界, 则∑ n = 1 ∞ u n v n \sum_{n=1}^\infty u_nv_n ∑ n = 1 ∞ u n v n 收敛.
Abel判别法 :
u n u_n u n 单调有界, ∑ n = 1 ∞ v n \sum_{n=1}^\infty v_n ∑ n = 1 ∞ v n 收敛, 则∑ n = 1 ∞ u n v n \sum_{n=1}^\infty u_nv_n ∑ n = 1 ∞ u n v n 收敛.
函数项级数 : 函数u n ( x ) u_n(x) u n ( x ) 定义在I I I 上, 则:
∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x)
n = 1 ∑ ∞ u n ( x )
∀ α ∈ I \forall \alpha \in I ∀ α ∈ I , 若∑ n = 1 ∞ u n ( α ) \sum_{n=1}^\infty u_n(\alpha) ∑ n = 1 ∞ u n ( α ) 收敛, 则α \alpha α 为收敛点 . ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^{\infty} u_n(x) ∑ n = 1 ∞ u n ( x ) 的收敛点集合为其收敛域 D D D . 若x ∈ D x \in D x ∈ D , 则有和函数 :
S ( x ) = ∑ n = 1 ∞ u n ( x ) S(x) = \sum_{n=1}^\infty u_n(x)
S ( x ) = n = 1 ∑ ∞ u n ( x )
与常数项级数类似对于x ∈ D x \in D x ∈ D , 部分和函数有:
S n ( x ) = ∑ k = 1 n u k ( x ) lim n → ∞ S n ( x ) = S ( x ) \begin{aligned}
S_n(x) = \sum_{k=1}^n u_k(x) \\
\lim_{n\to\infty} S_n(x) = S(x) \\
\end{aligned}
S n ( x ) = k = 1 ∑ n u k ( x ) n → ∞ lim S n ( x ) = S ( x )
一致收敛 : 若∑ n = 1 ∞ u n ( α ) \sum_{n=1}^\infty u_n(\alpha) ∑ n = 1 ∞ u n ( α ) 在区间I I I 上处处收敛, 部分和函数列{ S n ( x ) } \lbrace S_n(x) \rbrace { S n ( x ) } 在区间I I I 上一致收敛到和函数, 则该函数项级数在区间I I I 上一致收敛. 具体地, 对于部分和函数列的一致收敛: ∀ ε > 0 \forall \varepsilon \gt 0 ∀ ε > 0 , ∃ N > 0 \exists N \gt 0 ∃ N > 0 , ∀ n > N , x ∈ I \forall n \gt N, x \in I ∀ n > N , x ∈ I , ∣ S n ( x ) − S ( x ) ∣ < ε \vert S_n(x) - S(x) \vert \lt \varepsilon ∣ S n ( x ) − S ( x ) ∣ < ε , 记为S n ( x ) ⇉ I S ( x ) ( n → ∞ ) S_n(x) \stackrel{I}{\rightrightarrows} S(x)\;\;\;\;(n \to \infty) S n ( x ) ⇉ I S ( x ) ( n → ∞ ) .
{ f n ( x ) } \lbrace f_n(x) \rbrace { f n ( x ) } 一致收敛当且仅当∀ ε > 0 \forall \varepsilon \gt 0 ∀ ε > 0 , ∃ N > 0 \exists N \gt 0 ∃ N > 0 , ∀ n > N , x ∈ I \forall n \gt N, x \in I ∀ n > N , x ∈ I , ∀ p ≥ 1 \forall p \ge 1 ∀ p ≥ 1 , ∣ f n + p ( x ) − f n ( x ) ∣ < ε \vert f_{n+p}(x) - f_n(x) \vert \lt \varepsilon ∣ f n + p ( x ) − f n ( x ) ∣ < ε .
f n ( x ) ⇉ I f ( x ) f_n(x) \stackrel{I}{\rightrightarrows} f(x) f n ( x ) ⇉ I f ( x ) 当且仅当lim n → ∞ sup x ∈ I ∣ f n ( x ) − f ( x ) ∣ = 0 \lim_{n\to\infty} \sup_{x \in I}\vert f_n(x)-f(x) \vert = 0 lim n → ∞ sup x ∈ I ∣ f n ( x ) − f ( x ) ∣ = 0 .
若{ f n ( x ) } \lbrace f_n(x) \rbrace { f n ( x ) } 在[ a , b ] [a,b] [ a , b ] 上有定义, ∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , f n ( x ) f_n(x) f n ( x ) 在a a a 处右连续, 但{ f n ( a ) } \lbrace f_n(a) \rbrace { f n ( a ) } 发散, 则∀ 0 < δ < b − a \forall 0 \lt \delta \lt b-a ∀ 0 < δ < b − a , { f n ( x ) } \lbrace f_n(x) \rbrace { f n ( x ) } 在( a , a + δ ) (a,a+\delta) ( a , a + δ ) 内非一致收敛.
函数项级数一致收敛柯西原理 : ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 在区间I I I 上一致收敛当且仅当∀ ε > 0 \forall \varepsilon \gt 0 ∀ ε > 0 , ∃ N > 0 \exists N \gt 0 ∃ N > 0 , ∀ n > N , x ∈ I \forall n \gt N, x \in I ∀ n > N , x ∈ I , ∀ p ∈ N ∗ \forall p \in \mathbb N^\ast ∀ p ∈ N ∗ , ∣ ∑ k = n + 1 n + p u k ( x ) ∣ < ε \left\vert \sum_{k=n+1}^{n+p} u_k(x) \right\vert \lt \varepsilon ∣ ∣ ∑ k = n + 1 n + p u k ( x ) ∣ ∣ < ε .
若{ u n ( x ) } \lbrace u_n(x) \rbrace { u n ( x ) } 在I I I 上非一致收敛到0 0 0 , 则∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 在I I I 上非一致收敛.
若∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 在[ a , b ] [a,b] [ a , b ] 上有定义, ∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , u n ( x ) u_n(x) u n ( x ) 在a a a 处右连续, 但∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 发散, 则∀ 0 < δ < b − a \forall 0 \lt \delta \lt b-a ∀ 0 < δ < b − a , ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 在( a , a + δ ) (a,a+\delta) ( a , a + δ ) 内非一致收敛.
Majorant判别法 :
∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , ∣ u n ( x ) ∣ \vert u_n(x) \vert ∣ u n ( x ) ∣ 在区间I I I 上有定义且有上界c n c_n c n . 若∑ n = 1 ∞ c n \sum_{n=1}^\infty c_n ∑ n = 1 ∞ c n 收敛, 则∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 在I I I 上绝对收敛且一致收敛.
Dirichlet判别法 :
若∀ x ∈ I \forall x \in I ∀ x ∈ I , { u n ( x ) } \lbrace u_n(x) \rbrace { u n ( x ) } 单调且u n ( x ) ⇉ I 0 u_n(x) \stackrel{I}{\rightrightarrows} 0 u n ( x ) ⇉ I 0 , 且∑ n = 1 ∞ v n ( x ) \sum_{n=1}^\infty v_n(x) ∑ n = 1 ∞ v n ( x ) 部分和函数列一致有界(i.e.: ∃ M > 0 \exists M \gt 0 ∃ M > 0 s.t.: ∣ ∑ k = 1 n v k ( x ) ∣ ≤ M \left\vert \sum_{k=1}^n v_k(x) \right\vert \le M ∣ ∑ k = 1 n v k ( x ) ∣ ≤ M ), 则∑ n = 1 ∞ u n ( x ) v n ( x ) \sum_{n=1}^\infty u_n(x)v_n(x) ∑ n = 1 ∞ u n ( x ) v n ( x ) 在I I I 上一致收敛.
Abel判别法 :
若∀ x ∈ I \forall x \in I ∀ x ∈ I , { u n ( x ) } \lbrace u_n(x) \rbrace { u n ( x ) } 单调且函数列{ u n ( x ) } \lbrace u_n(x) \rbrace { u n ( x ) } 在I I I 上一致有界, 且∑ n = 1 ∞ v n ( x ) \sum_{n=1}^\infty v_n(x) ∑ n = 1 ∞ v n ( x ) 在I I I 上一致收敛, 则∑ n = 1 ∞ u n ( x ) v n ( x ) \sum_{n=1}^\infty u_n(x)v_n(x) ∑ n = 1 ∞ u n ( x ) v n ( x ) 在I I I 上一致收敛.
若∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 在I I I 上一致收敛到其和函数S ( x ) S(x) S ( x ) , 且∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , u n ( x ) ∈ C ( I ) u_n(x) \in \mathscr C(I) u n ( x ) ∈ C ( I ) , 则S ( x ) ∈ C ( I ) S(x) \in \mathscr C(I) S ( x ) ∈ C ( I ) .
若f n ( x ) ⇉ I f ( x ) f_n(x) \stackrel{I}{\rightrightarrows} f(x) f n ( x ) ⇉ I f ( x ) 且∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , f n ( x ) ∈ C ( I ) f_n(x) \in \mathscr C(I) f n ( x ) ∈ C ( I ) , 则f ( x ) ∈ C ( I ) f(x) \in \mathscr C(I) f ( x ) ∈ C ( I ) .
若∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , u n ( x ) ∈ C ( I ) u_n(x) \in \mathscr C(I) u n ( x ) ∈ C ( I ) 但S ( x ) ∉ C ( I ) S(x) \not \in \mathscr C(I) S ( x ) ∈ C ( I ) , 则∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 在I I I 上非一致收敛.
若∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) ∑ n = 1 ∞ u n ( x ) 在[ a , b ] [a,b] [ a , b ] 上一致收敛到其和函数S ( x ) S(x) S ( x ) , 且∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , u n ( x ) ∈ C [ a , b ] u_n(x) \in \mathscr C[a,b] u n ( x ) ∈ C [ a , b ] , 则S ( x ) ∈ R [ a , b ] S(x) \in \mathscr R[a,b] S ( x ) ∈ R [ a , b ] 且:
∫ a b S ( x ) d x = ∑ n = 1 ∞ ∫ a b u n ( x ) d x = lim n → ∞ ∫ a b S n ( x ) d x \int_a^b S(x)\;\text{d}x = \sum_{n=1}^\infty \int_a^b u_n(x)\;\text{d}x = \lim_{n\to\infty} \int_a^b S_n(x)\;\text{d}x
∫ a b S ( x ) d x = n = 1 ∑ ∞ ∫ a b u n ( x ) d x = n → ∞ lim ∫ a b S n ( x ) d x
一般地, 若f n ( x ) ⇉ [ a , b ] f ( x ) f_n(x) \stackrel{[a,b]}{\rightrightarrows} f(x) f n ( x ) ⇉ [ a , b ] f ( x ) , 且∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , f n ( x ) ∈ C [ a , b ] f_n(x) \in \mathscr C[a,b] f n ( x ) ∈ C [ a , b ] , 则f ( x ) ∈ R [ a , b ] f(x) \in \mathscr R[a,b] f ( x ) ∈ R [ a , b ] 且:
∫ a b f ( x ) d x = lim n → ∞ ∫ a b f n ( x ) d x \int_a^b f(x)\;\text{d}x = \lim_{n\to\infty} \int_a^b f_n(x)\;\text{d}x
∫ a b f ( x ) d x = n → ∞ lim ∫ a b f n ( x ) d x
若∑ n = 1 ∞ u n ( x ) = S ( x ) \sum_{n=1}^\infty u_n(x) = S(x) ∑ n = 1 ∞ u n ( x ) = S ( x ) , ∑ n = 1 ∞ u n ′ ( x ) \sum_{n=1}^\infty u_n'(x) ∑ n = 1 ∞ u n ′ ( x ) 在[ a , b ] [a,b] [ a , b ] 上一致收敛, 且∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , u n ( x ) ∈ C ( 1 ) [ a , b ] u_n(x) \in \mathscr C^{(1)}[a,b] u n ( x ) ∈ C ( 1 ) [ a , b ] , 则S ( x ) ∈ C ( 1 ) [ a , b ] S(x) \in \mathscr C^{(1)}[a,b] S ( x ) ∈ C ( 1 ) [ a , b ] 且:
S ′ ( x ) = ∑ n = 1 ∞ u n ′ ( x ) S'(x) = \sum_{n=1}^\infty u'_n(x)
S ′ ( x ) = n = 1 ∑ ∞ u n ′ ( x )
一般地, 若f n ( x ) ⇉ [ a , b ] f ( x ) f_n(x) \stackrel{[a,b]}{\rightrightarrows} f(x) f n ( x ) ⇉ [ a , b ] f ( x ) , 且∀ n ≥ 1 \forall n \ge 1 ∀ n ≥ 1 , f n ( x ) ∈ C ( 1 ) [ a , b ] f_n(x) \in \mathscr C^{(1)}[a,b] f n ( x ) ∈ C ( 1 ) [ a , b ] , 则f ( 1 ) ( x ) ∈ C [ a , b ] f^{(1)}(x) \in \mathscr C[a,b] f ( 1 ) ( x ) ∈ C [ a , b ] 且:
∫ a b f ′ ( x ) d x = lim n → ∞ ∫ a b f n ′ ( x ) d x \int_a^b f'(x)\;\text{d}x = \lim_{n\to\infty} \int_a^b f'_n(x)\;\text{d}x
∫ a b f ′ ( x ) d x = n → ∞ lim ∫ a b f n ′ ( x ) d x
幂级数 :
∑ n = 0 ∞ a n ( x − a ) n \sum_{n=0}^\infty a_n(x-a)^n
n = 0 ∑ ∞ a n ( x − a ) n
Abel第一定理 :
∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 在x 0 ≠ 0 x_0 \ne 0 x 0 = 0 处收敛, 则∀ ∣ h ∣ < ∣ x 0 ∣ \forall \vert h \vert \lt \vert x_0 \vert ∀ ∣ h ∣ < ∣ x 0 ∣ , ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 在[ − h , h ] [-h,h] [ − h , h ] 上绝对收敛且一致收敛.
Proof:
∣ a n x n ∣ = ∣ a n x 0 n ∣ ⋅ ∣ ( x x 0 ) n ∣ ≤ ∣ a n x 0 n ∣ ⋅ ∣ h x 0 ∣ n \vert a_nx^n \vert = \vert a_nx_0^n \vert \cdot \left\vert \left(\frac{x}{x_0}\right)^n \right\vert \le \vert a_nx_0^n \vert \cdot \left\vert \frac{h}{x_0} \right\vert^n ∣ a n x n ∣ = ∣ a n x 0 n ∣ ⋅ ∣ ∣ ∣ ( x 0 x ) n ∣ ∣ ∣ ≤ ∣ a n x 0 n ∣ ⋅ ∣ ∣ ∣ x 0 h ∣ ∣ ∣ n . 注意到a n x 0 n a_nx_0^n a n x 0 n 趋于0 0 0 故有上界M M M , 根据Majorant判别法, 该式≤ M ⋅ ∣ h x 0 ∣ n \le M \cdot \left\vert \frac{h}{x_0} \right\vert^n ≤ M ⋅ ∣ ∣ ∣ x 0 h ∣ ∣ ∣ n , 后者为公比小于1 1 1 的等比数列, 故收敛. 故原级数绝对收敛且一致收敛.
∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 在x 1 ≠ 0 x_1 \ne 0 x 1 = 0 处发散, 则∀ ∣ x 2 ∣ > ∣ x 1 ∣ \forall \vert x_2 \vert \gt \vert x_1 \vert ∀ ∣ x 2 ∣ > ∣ x 1 ∣ , ∑ n = 1 ∞ a n x 2 n \sum_{n=1}^\infty a_nx_2^n ∑ n = 1 ∞ a n x 2 n 发散.
∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 在x 0 ≠ 0 x_0 \ne 0 x 0 = 0 处收敛, 在x 1 ≠ 0 x_1 \ne 0 x 1 = 0 处发散, 则∃ ! r > 0 \exists ! r \gt 0 ∃ ! r > 0 , 使得∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 在( − r , r ) (-r,r) ( − r , r ) 内绝对收敛, 在[ − r , r ] [-r,r] [ − r , r ] 外处处发散.
收敛半径 : 若∃ ! r ∈ [ 0 , ∞ ] \exists! r \in [0,\infty] ∃ ! r ∈ [ 0 , ∞ ] s.t.: ∀ ∣ x ∣ < r \forall \vert x \vert \lt r ∀ ∣ x ∣ < r , ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 绝对收敛, ∀ ∣ x ∣ > r \forall \vert x \vert \gt r ∀ ∣ x ∣ > r , ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 发散. 则r r r 为∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 的收敛半径; ( − r , r ) (-r,r) ( − r , r ) 为∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 的收敛区间(注意收敛区间一定是开区间).
幂级数的收敛域为收敛区间并上收敛的区间端点. 收敛域是以原点为中心的区间.
对于∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 的收敛半径r r r , ∀ [ a , b ] ⊆ ( − r , r ) \forall [a,b] \subseteq (-r,r) ∀ [ a , b ] ⊆ ( − r , r ) , ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 在[ a , b ] [a,b] [ a , b ] 上绝对收敛且一致收敛.
若lim n → ∞ a n + 1 a n = l \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l lim n → ∞ a n a n + 1 = l 或lim n → ∞ ∣ a n ∣ n = l \lim_{n\to\infty}\sqrt[n]{\vert a_n \vert} = l lim n → ∞ n ∣ a n ∣ = l , 则∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 的收敛半径为r = 1 / l r = 1/l r = 1 / l . 特别地, l = 0 l = 0 l = 0 时r = + ∞ r = +\infty r = + ∞ ; l = + ∞ l = +\infty l = + ∞ 时r = 0 r = 0 r = 0 .
Abel第二定理 :
若∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 收敛半径为R R R 且在R R R (或− R -R − R )处收敛, 则∀ 0 < r < R \forall 0 \lt r \lt R ∀ 0 < r < R , ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 在[ − r , R ] [-r,R] [ − r , R ] (或[ − R , r ] [-R,r] [ − R , r ] )上一致收敛.
Proof:
[ − r , R ] = [ − r , 0 ] ⋃ [ 0 , R ] [-r,R] = [-r,0] \bigcup [0,R] [ − r , R ] = [ − r , 0 ] ⋃ [ 0 , R ] . [ − r , 0 ] ⊆ ( − R , R ) [-r,0] \subseteq (-R,R) [ − r , 0 ] ⊆ ( − R , R ) 显然一致收敛, 对于[ 0 , R ] [0,R] [ 0 , R ] : ∑ n = 0 ∞ a n x n = ∑ n = 0 ∞ a n R n ⋅ x n R n \sum_{n=0}^\infty a_nx^n = \sum_{n=0}^\infty a_nR^n \cdot \frac{x^n}{R^n} ∑ n = 0 ∞ a n x n = ∑ n = 0 ∞ a n R n ⋅ R n x n , 根据Abel判别法, 前者与x x x 无关在[ 0 , R ] [0,R] [ 0 , R ] 一致收敛, 后者在[ 0 , R ] [0,R] [ 0 , R ] 单调递减且一致收敛, 则原级数在[ 0 , R ] [0,R] [ 0 , R ] 一致收敛.
若∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 收敛半径为r r r , 则:
S ( x ) ∈ C ( − r , r ) S(x) \in \mathscr C(-r,r) S ( x ) ∈ C ( − r , r ) .
若级数在r r r 处收敛, 则S ( x ) ∈ C ( − r , r ] S(x) \in \mathscr C(-r,r] S ( x ) ∈ C ( − r , r ] .
若级数在− r -r − r 处收敛, 则S ( x ) ∈ C [ − r , r ) S(x) \in \mathscr C[-r,r) S ( x ) ∈ C [ − r , r ) .
∀ [ a , b ] ⊆ ( − r , r ) \forall [a,b] \subseteq (-r,r) ∀ [ a , b ] ⊆ ( − r , r ) , S ( x ) ∈ R [ a , b ] S(x) \in \mathscr R[a,b] S ( x ) ∈ R [ a , b ] , 且:∫ a b S ( x ) d x = ∑ n = 0 ∞ ∫ a b a n x n d x = ∑ n = 0 ∞ 1 n + 1 a n ( b n + 1 − a n + 1 ) \int_a^b S(x)\;\text{d}x = \sum_{n=0}^\infty \int_a^b a_nx^n \;\text{d}x = \sum_{n=0}^\infty \frac{1}{n+1}a_n(b^{n+1}-a^{n+1})
∫ a b S ( x ) d x = n = 0 ∑ ∞ ∫ a b a n x n d x = n = 0 ∑ ∞ n + 1 1 a n ( b n + 1 − a n + 1 )
∑ n = 0 ∞ 1 n + 1 a n x n + 1 \sum_{n=0}^\infty \frac{1}{n+1}a_nx^{n+1} ∑ n = 0 ∞ n + 1 1 a n x n + 1 , ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n , ∑ n = 1 ∞ n a n x n − 1 \sum_{n=1}^\infty na_nx^{n-1} ∑ n = 1 ∞ n a n x n − 1 收敛半径相同.
若∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n ∑ n = 0 ∞ a n x n 收敛半径为r r r , 则S ( x ) ∈ C ( ∞ ) ( − r , r ) S(x) \in \mathscr C^{(\infty)}(-r,r) S ( x ) ∈ C ( ∞ ) ( − r , r ) 且:
S ( k ) ( x ) = ∑ n = k ∞ n k ‾ a n x n − k S^{(k)}(x) = \sum_{n=k}^\infty n^{\underline k} a_n x^{n-k}
S ( k ) ( x ) = n = k ∑ ∞ n k a n x n − k
(注意S ( x ) S(x) S ( x ) 仅在收敛域上有意义)
泰勒级数 : 若f ( x ) f(x) f ( x ) 在( a − r , a + r ) (a-r,a+r) ( a − r , a + r ) 内能展开成幂级数f ( x ) = ∑ n = 0 ∞ a n ( x − a ) n f(x) = \sum_{n=0}^\infty a_n(x-a)^n f ( x ) = ∑ n = 0 ∞ a n ( x − a ) n , 则r r r 为该级数的收敛半径, f ( x ) f(x) f ( x ) 为该级数的和函数, f ( x ) f(x) f ( x ) 在( a − r , a + r ) (a-r,a+r) ( a − r , a + r ) 内存在任意阶导数且f ( k ) ( x ) = S ( k ) ( x ) f^{(k)}(x) = S^{(k)}(x) f ( k ) ( x ) = S ( k ) ( x ) . 特别地, f ( k ) ( a ) = k ! a k f^{(k)}(a) = k!a_k f ( k ) ( a ) = k ! a k , 故a k = f ( k ) ( a ) k ! a_k = \frac{f^{(k)}(a)}{k!} a k = k ! f ( k ) ( a ) 唯一确定, 则:
f ( x ) ∼ ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n f(x) \sim \sum_{n=0}^\infty \frac{f^{(n)}(a)}{n!}(x-a)^n
f ( x ) ∼ n = 0 ∑ ∞ n ! f ( n ) ( a ) ( x − a ) n
称右侧级数为f ( x ) f(x) f ( x ) 在a a a 点的泰勒级数, f ( x ) f(x) f ( x ) 在a = 0 a=0 a = 0 处的泰勒级数为f ( x ) f(x) f ( x ) 的麦克劳林级数 .
f ( x ) f(x) f ( x ) 在点a a a 处可以展开为泰勒级数当且仅当f ( x ) f(x) f ( x ) 在( a − r , a + r ) (a-r,a+r) ( a − r , a + r ) 内任意阶导数存在, 且在∀ x ∈ ( a − r , a + r ) \forall x \in (a-r,a+r) ∀ x ∈ ( a − r , a + r ) , n → ∞ n\to\infty n → ∞ 时拉格朗日余项R n ( x ) R_n(x) R n ( x ) 趋近于0 0 0 .
lim n → ∞ R n = lim n → ∞ f ( n + 1 ) ( ξ ) ( x − a ) n + 1 ( n + 1 ) ! \lim_{n\to\infty} R_n = \lim_{n\to\infty}\frac{f^{(n+1)}(\xi)(x-a)^{n+1}}{(n+1)!}
n → ∞ lim R n = n → ∞ lim ( n + 1 ) ! f ( n + 1 ) ( ξ ) ( x − a ) n + 1
注意到一个充分条件为: f ( x ) f(x) f ( x ) 在( a − r , a + r ) (a-r,a+r) ( a − r , a + r ) 内各阶导数一致有界, 则:
lim n → ∞ ∣ R n ∣ ≤ lim n → ∞ M r n + 1 ( n + 1 ) ! = M lim n → ∞ r n + 1 ( n + 1 ) ! = 0 \lim_{n\to\infty} \vert R_n \vert \le \lim_{n\to\infty}\frac{Mr^{n+1}}{(n+1)!} = M\lim_{n\to\infty}\frac{r^{n+1}}{(n+1)!} = 0
n → ∞ lim ∣ R n ∣ ≤ n → ∞ lim ( n + 1 ) ! M r n + 1 = M n → ∞ lim ( n + 1 ) ! r n + 1 = 0
e.g.:
e x ∼ ∑ n = 0 ∞ 1 n ! x n sin x ∼ ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 cos x ∼ ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n ln ( 1 + x ) ∼ ∑ n = 1 ∞ ( − 1 ) n − 1 n x n x ∈ ( − 1 , 1 ] ( 1 + x ) α ∼ ∑ n = 0 ∞ α n ‾ n ! x n x ∈ { ( − 1 , 1 ) α ≤ − 1 ( − 1 , 1 ] − 1 < α < 0 [ − 1 , 1 ] α > 0 arcsin x ∼ ∑ n = 0 ∞ ( 2 n − 1 ) ! ! ( 2 n + 1 ) ( 2 n ) ! ! x 2 n + 1 x ∈ [ − 1 , 1 ] arctan x ∼ ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 x ∈ [ − 1 , 1 ] \begin{aligned}
e^x &\sim \sum_{n=0}^\infty \frac{1}{n!}x^n \\
\sin x &\sim \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}x^{2n+1} \\
\cos x &\sim \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}x^{2n} \\
\ln(1+x) &\sim \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n}x^n &x \in (-1,1] \\
(1+x)^\alpha &\sim \sum_{n=0}^\infty \frac{\alpha^{\underline n}}{n!}x^n &x \in \begin{cases}(-1,1) & \alpha \le -1 \\ (-1,1] & -1 \lt \alpha \lt 0 \\ [-1,1] & \alpha \gt 0 \\\end{cases} \\
\arcsin x &\sim \sum_{n=0}^\infty \frac{(2n-1)!!}{(2n+1)(2n)!!}x^{2n+1} &x \in [-1,1] \\
\arctan x &\sim \sum_{n=0}^\infty \frac{(-1)^n}{2n+1}x^{2n+1} &x \in [-1,1] \\
\end{aligned}
e x sin x cos x ln ( 1 + x ) ( 1 + x ) α arcsin x arctan x ∼ n = 0 ∑ ∞ n ! 1 x n ∼ n = 0 ∑ ∞ ( 2 n + 1 ) ! ( − 1 ) n x 2 n + 1 ∼ n = 0 ∑ ∞ ( 2 n ) ! ( − 1 ) n x 2 n ∼ n = 1 ∑ ∞ n ( − 1 ) n − 1 x n ∼ n = 0 ∑ ∞ n ! α n x n ∼ n = 0 ∑ ∞ ( 2 n + 1 ) ( 2 n ) ! ! ( 2 n − 1 ) ! ! x 2 n + 1 ∼ n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n x 2 n + 1 x ∈ ( − 1 , 1 ] x ∈ ⎩ ⎪ ⎨ ⎪ ⎧ ( − 1 , 1 ) ( − 1 , 1 ] [ − 1 , 1 ] α ≤ − 1 − 1 < α < 0 α > 0 x ∈ [ − 1 , 1 ] x ∈ [ − 1 , 1 ]
特别地,
1 1 + x = ( 1 + x ) − 1 / 2 = ∑ n = 1 ∞ ( − 1 ) n ( 2 n − 1 ) ! ! ( 2 n ) ! ! x 2 n 1 + x = ( 1 + x ) 1 / 2 = 1 + 1 2 x + ∑ n = 2 ∞ ( − 1 ) n + 1 ( 2 n − 3 ) ! ! ( 2 n ) ! ! x n π 2 = lim n → ∞ ( ( 2 n ) ! ! ( 2 n − 1 ) ! ! ) 2 1 2 n + 1 \begin{aligned}
\frac{1}{\sqrt{1+x}} &= (1+x)^{-1/2} = \sum_{n=1}^\infty \frac{(-1)^n(2n-1)!!}{(2n)!!} x^{2n} \\
\sqrt{1+x} &= (1+x)^{1/2} = 1+\frac{1}{2}x+\sum_{n=2}^\infty (-1)^{n+1}\frac{(2n-3)!!}{(2n)!!}x^n \\
\frac{\pi}{2} &= \lim_{n\to\infty} \left( \frac{(2n)!!}{(2n-1)!!}\right)^2\frac{1}{2n+1}
\end{aligned}
1 + x 1 1 + x 2 π = ( 1 + x ) − 1 / 2 = n = 1 ∑ ∞ ( 2 n ) ! ! ( − 1 ) n ( 2 n − 1 ) ! ! x 2 n = ( 1 + x ) 1 / 2 = 1 + 2 1 x + n = 2 ∑ ∞ ( − 1 ) n + 1 ( 2 n ) ! ! ( 2 n − 3 ) ! ! x n = n → ∞ lim ( ( 2 n − 1 ) ! ! ( 2 n ) ! ! ) 2 2 n + 1 1
三角函数系 : ∀ m , n ∈ N + \forall m,n \in \mathbb N^+ ∀ m , n ∈ N + :
∫ − π π sin n x cos m x d x = 1 2 ∫ − π π sin ( ( n + m ) x ) + sin ( ( n − m ) x ) d x = 0 \int_{-\pi}^\pi \sin nx \cos mx \;\text{d}x = \frac{1}{2}\int_{-\pi}^\pi \sin((n+m)x) + \sin((n-m)x)\;\text{d}x = 0
∫ − π π sin n x cos m x d x = 2 1 ∫ − π π sin ( ( n + m ) x ) + sin ( ( n − m ) x ) d x = 0
∫ − π π sin n x sin m x d x = π [ m = n ] \int_{-\pi}^\pi \sin nx \sin mx \;\text{d}x = \pi [m=n]
∫ − π π sin n x sin m x d x = π [ m = n ]
∫ − π π cos n x cos m x d x = π [ m = n ] \int_{-\pi}^\pi \cos nx \cos mx \;\text{d}x = \pi [m=n]
∫ − π π cos n x cos m x d x = π [ m = n ]
故{ 1 2 π , 1 π cos ( n x ) , 1 π sin ( n x ) } \lbrace \frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt \pi}\cos (nx),\frac{1}{\sqrt \pi}\sin(nx) \rbrace { 2 π 1 , π 1 cos ( n x ) , π 1 sin ( n x ) } 为标准正交三角函数系 : 即任意不同的二者内积为0 0 0 , 相同的内积为1 1 1 .
Fourier级数 : 设f ( x ) ∈ R [ − π , π ] f(x) \in \mathscr R[-\pi,\pi] f ( x ) ∈ R [ − π , π ] , 则存在Fourier系数 { a n } n = 0 ∞ , { b n } n = 1 ∞ \lbrace a_n \rbrace_{n=0}^\infty, \lbrace b_n \rbrace_{n=1}^\infty { a n } n = 0 ∞ , { b n } n = 1 ∞ s.t.: f ( x ) f(x) f ( x ) 的Fourier级数为:
f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ a n cos ( n x ) + b n sin ( n x ) ( x ∈ [ − π , π ] ) f(x) \sim \frac{a_0}{2} +\sum_{n=1}^\infty a_n \cos (nx) + b_n \sin (nx) \qquad \qquad (x \in [-\pi,\pi])
f ( x ) ∼ 2 a 0 + n = 1 ∑ ∞ a n cos ( n x ) + b n sin ( n x ) ( x ∈ [ − π , π ] )
若Fourier级数收敛则可记为:
f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ( n x ) + b n sin ( n x ) ( x ∈ [ − π , π ] ) f(x) = \frac{a_0}{2} +\sum_{n=1}^\infty a_n \cos (nx) + b_n \sin (nx) \qquad \qquad (x \in [-\pi,\pi])
f ( x ) = 2 a 0 + n = 1 ∑ ∞ a n cos ( n x ) + b n sin ( n x ) ( x ∈ [ − π , π ] )
对等式两侧同时乘cos n x \cos nx cos n x 并积分, 可得:
a n = 1 π ∫ − π π f ( x ) cos ( n x ) d x a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x)\cos(nx) \;\text{d}x
a n = π 1 ∫ − π π f ( x ) cos ( n x ) d x
对等式两侧同时乘sin n x \sin nx sin n x 并积分, 可得:
b n = 1 π ∫ − π π f ( x ) sin ( n x ) d x b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x)\sin(nx) \;\text{d}x
b n = π 1 ∫ − π π f ( x ) sin ( n x ) d x
Dirichlet收敛定理 :
若f ( x ) f(x) f ( x ) 在[ a , b ] [a,b] [ a , b ] 上有界, 且存在分割a = x 0 < x 1 < ⋯ < x n − 1 < x n = b a = x_0 \lt x_1 \lt \cdots \lt x_{n-1} \lt x_n = b a = x 0 < x 1 < ⋯ < x n − 1 < x n = b 使得在任意区间( x k − 1 , x k ) (x_{k-1},x_k) ( x k − 1 , x k ) 上f ( x ) f(x) f ( x ) 单调, 则称f ( x ) f(x) f ( x ) 分段单调. 若f ( x ) f(x) f ( x ) 以2 π 2\pi 2 π 为周期, 在[ − π , π ] [-\pi,\pi] [ − π , π ] 分段单调有界, 则f ( x ) f(x) f ( x ) 的Fourier级数在R \mathbb R R 上收敛, 其在x x x 处的展开收敛到:
1 2 ( f + ( x ) + f − ( x ) ) \frac{1}{2}\Big(f_+(x) + f_-(x)\Big)
2 1 ( f + ( x ) + f − ( x ) )
若f ( x ) f(x) f ( x ) 为奇函数, 则a n = 0 a_n = 0 a n = 0 ; 若f ( x ) f(x) f ( x ) 为偶函数, 则b n = 0 b_n = 0 b n = 0 .
若f ( x ) f(x) f ( x ) 周期为2 l 2l 2 l , 则可将φ ( y ) = f ( l π y ) = f ( x ) \varphi(y) = f(\frac{l}{\pi}y) = f(x) φ ( y ) = f ( π l y ) = f ( x ) 展开为Fourier级数. 故:
f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ a n cos ( n π l x ) + b n sin ( n π l x ) f(x) \sim \frac{a_0}{2} +\sum_{n=1}^\infty a_n \cos \left(\frac{n\pi}{l}x\right) + b_n \sin \left(\frac{n\pi}{l}x\right)
f ( x ) ∼ 2 a 0 + n = 1 ∑ ∞ a n cos ( l n π x ) + b n sin ( l n π x )
a n = 1 l ∫ − l l f ( x ) cos ( n π l x ) d x a_n = \frac{1}{l}\int_{-l}^l f(x)\cos\left(\frac{n\pi}{l}x\right) \;\text{d}x
a n = l 1 ∫ − l l f ( x ) cos ( l n π x ) d x
b n = 1 l ∫ − l l f ( x ) sin ( n π l x ) d x b_n = \frac{1}{l}\int_{-l}^l f(x)\sin\left(\frac{n\pi}{l}x\right) \;\text{d}x
b n = l 1 ∫ − l l f ( x ) sin ( l n π x ) d x
三角多项式 : 对于R \mathbb R R 上的{ c k } k = 0 n , { d k } k = 1 n \lbrace c_k \rbrace_{k=0}^n, \lbrace d_k \rbrace_{k=1}^n { c k } k = 0 n , { d k } k = 1 n , 若c n d n ≠ 0 c_nd_n \ne 0 c n d n = 0 , 则有n n n 阶三角多项式:
T n ( x ) = 1 2 c 0 + ∑ k = 1 n c k cos ( k x ) + d k sin ( k x ) T_n(x) = \frac{1}{2}c_0 + \sum_{k=1}^n c_k \cos(kx) + d_k \sin(kx)
T n ( x ) = 2 1 c 0 + k = 1 ∑ n c k cos ( k x ) + d k sin ( k x )
若f ( x ) ∈ R [ − π , π ] f(x) \in \mathscr R[-\pi,\pi] f ( x ) ∈ R [ − π , π ] 以2 π 2\pi 2 π 为周期, 则其Fourier级数的n n n 阶部分和S n ( f , x ) S_n(f,x) S n ( f , x ) 为一个阶数≤ n \le n ≤ n 的三角多项式, 而且该三角多项式最小化方均误差:
S n ( f , x ) = arg min T k ( x ) , k ≤ n ∫ − π π ( f ( x ) − T k ( x ) ) 2 d x S_n(f,x) = \argmin_{T_k(x), k \le n} \int_{-\pi}^\pi (f(x)-T_k(x))^2\;\text{d}x
S n ( f , x ) = T k ( x ) , k ≤ n a r g m i n ∫ − π π ( f ( x ) − T k ( x ) ) 2 d x
Proof:
∀ T k ( x ) \forall T_k(x) ∀ T k ( x ) s.t.: k ≤ n k \le n k ≤ n :
1 2 π ∫ − π π ( f ( x ) − T k ( x ) ) 2 d x = 1 2 π ∫ − π π f 2 ( x ) + T k 2 ( x ) d x − 1 π ∫ − π π f ( x ) T k ( x ) d x = 1 2 π ∫ − π π f 2 ( x ) d x + 1 2 ( 1 2 c 0 2 + ∑ k = 1 n c k 2 + d k 2 ) − ( 1 2 a 0 c 0 + ∑ k = 1 n c k a k + d k b k ) = 1 2 π ∫ − π π f 2 ( x ) d x + 1 2 ( 1 2 ( a 0 − c 0 ) 2 + ∑ k = 1 n ( a k − c k ) 2 + ( d k − b k ) 2 ) ⏟ ≥ 0 − 1 2 ( 1 2 a 0 2 + ∑ k = 1 n a k 2 + b k 2 ) ≥ 1 2 π ∫ − π π f 2 ( x ) d x − 1 2 ( 1 2 a 0 2 + ∑ k = 1 n a k 2 + b k 2 ) = 1 2 π ∫ − π π ( f ( x ) − S n ( f , x ) ) 2 d x \begin{aligned}
\frac{1}{2\pi}\int_{-\pi}^\pi (f(x)-T_k(x))^2\;\text{d}x &= \frac{1}{2\pi}\int_{-\pi}^\pi f^2(x) + T^2_k(x) \;\text{d}x - \frac{1}{\pi} \int_{-\pi}^\pi f(x)T_k(x)\;\text{d}x \\
&= \frac{1}{2\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x + \frac{1}{2}\left(\frac{1}{2}c_0^2 + \sum_{k=1}^n c_k^2+d_k^2 \right) - \left(\frac{1}{2}a_0c_0 + \sum_{k=1}^n c_ka_k+d_kb_k\right) \\
&= \frac{1}{2\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x + \underbrace{\frac{1}{2}\left(\frac{1}{2}(a_0-c_0)^2+\sum_{k=1}^n (a_k-c_k)^2+(d_k-b_k)^2 \right)}_{\ge 0} - \frac{1}{2}\left(\frac{1}{2}a_0^2 + \sum_{k=1}^n a_k^2+b_k^2 \right) \\
&\ge \frac{1}{2\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x - \frac{1}{2}\left(\frac{1}{2}a_0^2 + \sum_{k=1}^n a_k^2+b_k^2 \right) \\
&= \frac{1}{2\pi}\int_{-\pi}^\pi (f(x)-S_n(f,x))^2\;\text{d}x
\end{aligned}
2 π 1 ∫ − π π ( f ( x ) − T k ( x ) ) 2 d x = 2 π 1 ∫ − π π f 2 ( x ) + T k 2 ( x ) d x − π 1 ∫ − π π f ( x ) T k ( x ) d x = 2 π 1 ∫ − π π f 2 ( x ) d x + 2 1 ( 2 1 c 0 2 + k = 1 ∑ n c k 2 + d k 2 ) − ( 2 1 a 0 c 0 + k = 1 ∑ n c k a k + d k b k ) = 2 π 1 ∫ − π π f 2 ( x ) d x + ≥ 0 2 1 ( 2 1 ( a 0 − c 0 ) 2 + k = 1 ∑ n ( a k − c k ) 2 + ( d k − b k ) 2 ) − 2 1 ( 2 1 a 0 2 + k = 1 ∑ n a k 2 + b k 2 ) ≥ 2 π 1 ∫ − π π f 2 ( x ) d x − 2 1 ( 2 1 a 0 2 + k = 1 ∑ n a k 2 + b k 2 ) = 2 π 1 ∫ − π π ( f ( x ) − S n ( f , x ) ) 2 d x
第一逼近定理 :
∀ f ( x ) ∈ C [ a , b ] \forall f(x) \in \mathscr C[a,b] ∀ f ( x ) ∈ C [ a , b ] , ∀ ε > 0 \forall \varepsilon \gt 0 ∀ ε > 0 , ∃ \exists ∃ 多项式 p ( x ) p(x) p ( x ) s.t.: ∀ x ∈ [ a , b ] , ∣ f ( x ) − p ( x ) ∣ < ε \forall x \in [a,b], \vert f(x)-p(x) \vert \lt \varepsilon ∀ x ∈ [ a , b ] , ∣ f ( x ) − p ( x ) ∣ < ε .
第二逼近定理 :
∀ f ( x ) \forall f(x) ∀ f ( x ) 连续且周期为2 π 2\pi 2 π , ∀ ε > 0 \forall \varepsilon \gt 0 ∀ ε > 0 , ∃ \exists ∃ 三角多项式 q ( x ) q(x) q ( x ) s.t.: ∀ x ∈ R , ∣ f ( x ) − q ( x ) ∣ < ε \forall x \in \mathbb R, \vert f(x)-q(x) \vert \lt \varepsilon ∀ x ∈ R , ∣ f ( x ) − q ( x ) ∣ < ε .
Lebesgue可积函数逼近定理 :
∀ f ( x ) ∈ R [ a , b ] \forall f(x) \in \mathscr R[a,b] ∀ f ( x ) ∈ R [ a , b ] , ∀ ε > 0 \forall \varepsilon \gt 0 ∀ ε > 0 , ∃ g ( x ) ∈ C [ a , b ] \exists g(x) \in \mathscr C[a,b] ∃ g ( x ) ∈ C [ a , b ] s.t.: ∫ a b ( f ( x ) − g ( x ) ) 2 d x < ε \int_a^b (f(x)-g(x))^2\;\text{d}x \lt \varepsilon ∫ a b ( f ( x ) − g ( x ) ) 2 d x < ε .
由上述定理可进一步得到推论:
∀ f ( x ) \forall f(x) ∀ f ( x ) 可积且周期为2 π 2\pi 2 π , ∀ ε > 0 \forall \varepsilon \gt 0 ∀ ε > 0 , ∃ \exists ∃ 三角多项式 q ( x ) q(x) q ( x ) s.t.: ∫ − π π ( f ( x ) − q ( x ) ) 2 d x < ε \int_{-\pi}^{\pi} (f(x)-q(x))^2\;\text{d}x \lt \varepsilon ∫ − π π ( f ( x ) − q ( x ) ) 2 d x < ε .
Bessel不等式 : 若f ( x ) ∈ R [ − π , π ] f(x) \in \mathscr R[-\pi,\pi] f ( x ) ∈ R [ − π , π ] 以2 π 2\pi 2 π 为周期, 则∀ n ∈ N + \forall n \in \mathbb N^+ ∀ n ∈ N + :
1 π ∫ − π π f 2 ( x ) d x ≥ 1 2 a 0 2 + ∑ k = 1 n a k 2 + b k 2 \frac{1}{\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x \ge \frac{1}{2}a_0^2 + \sum_{k=1}^n a_k^2+b_k^2
π 1 ∫ − π π f 2 ( x ) d x ≥ 2 1 a 0 2 + k = 1 ∑ n a k 2 + b k 2
Parseval等式 : 若f ( x ) ∈ R [ − π , π ] f(x) \in \mathscr R[-\pi,\pi] f ( x ) ∈ R [ − π , π ] 以2 π 2\pi 2 π 为周期, 则:
1 π ∫ − π π f 2 ( x ) d x = 1 2 a 0 2 + ∑ k = 1 ∞ a k 2 + b k 2 \frac{1}{\pi}\int_{-\pi}^\pi f^2(x) \;\text{d}x = \frac{1}{2}a_0^2 + \sum_{k=1}^\infty a_k^2+b_k^2
π 1 ∫ − π π f 2 ( x ) d x = 2 1 a 0 2 + k = 1 ∑ ∞ a k 2 + b k 2
更一般地, 若f ( x ) , g ( x ) ∈ R [ − π , π ] f(x),g(x) \in \mathscr R[-\pi,\pi] f ( x ) , g ( x ) ∈ R [ − π , π ] 以2 π 2\pi 2 π 为周期, 则:
1 π ∫ − π π f ( x ) g ( x ) d x = 1 2 a 0 c 0 + ∑ k = 1 ∞ a k c k + b k d k \frac{1}{\pi}\int_{-\pi}^\pi f(x)g(x) \;\text{d}x = \frac{1}{2}a_0c_0 + \sum_{k=1}^\infty a_kc_k+b_kd_k
π 1 ∫ − π π f ( x ) g ( x ) d x = 2 1 a 0 c 0 + k = 1 ∑ ∞ a k c k + b k d k
Riemann-Lebesgue引理 :
f ( x ) ∈ R [ a , b ] f(x) \in \mathscr R[a,b] f ( x ) ∈ R [ a , b ] , 则:
lim ∣ λ ∣ → ∞ ∫ a b f ( x ) cos ( λ x ) d x = 0 lim ∣ λ ∣ → ∞ ∫ a b f ( x ) sin ( λ x ) d x = 0 \begin{aligned}
\lim_{\vert \lambda \vert \to \infty} \int_a^b f(x) \cos(\lambda x)\;\text{d}x = 0 \\
\lim_{\vert \lambda \vert \to \infty} \int_a^b f(x) \sin(\lambda x)\;\text{d}x = 0 \\
\end{aligned}
∣ λ ∣ → ∞ lim ∫ a b f ( x ) cos ( λ x ) d x = 0 ∣ λ ∣ → ∞ lim ∫ a b f ( x ) sin ( λ x ) d x = 0
故若f ( x ) ∈ R [ a , b ] f(x) \in \mathscr R[a,b] f ( x ) ∈ R [ a , b ] , 则lim n → ∞ a n = lim n → ∞ b n = 0 \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0 lim n → ∞ a n = lim n → ∞ b n = 0 .
更进一步, 若f ′ ( x ) ∈ R [ a , b ] f'(x) \in \mathscr R[a,b] f ′ ( x ) ∈ R [ a , b ] 且f ( − π ) = f ( π ) f(-\pi)=f(\pi) f ( − π ) = f ( π ) , 则a n = o ( 1 n ) , b n = o ( 1 n ) a_n=o(\frac{1}{n}), b_n=o(\frac{1}{n}) a n = o ( n 1 ) , b n = o ( n 1 ) . 这是因为a n = 1 n b n ′ , b n = − 1 n a n ′ a_n = \frac{1}{n}b_n', b_n = -\frac{1}{n}a'_n a n = n 1 b n ′ , b n = − n 1 a n ′ .
复谐振动 :
x = C e i ω t = r e i ( θ + ω t ) = r ( cos ( θ + ω t ) + i sin ( θ + ω t ) ) x = Ce^{i\omega t} = re^{i(\theta + \omega t)} = r(\cos(\theta+\omega t)+ i \sin(\theta+\omega t))
x = C e i ω t = r e i ( θ + ω t ) = r ( cos ( θ + ω t ) + i sin ( θ + ω t ) )
其中C = r e i θ C = re^{i\theta} C = r e i θ 为复振幅 , ∣ C ∣ \vert C \vert ∣ C ∣ 为振幅 , θ \theta θ 为初相 , ω ∈ R \omega \in \mathbb R ω ∈ R 为圆频率 .
复数形式Fourier级数 :
设f ( t ) ∈ R [ − l , l ] f(t) \in \mathscr R[-l,l] f ( t ) ∈ R [ − l , l ] 周期为2 l 2l 2 l , 令ω = π / l \omega = \pi/l ω = π / l , 则其Fourier级数可以写成:
f ( t ) ∼ a 0 2 + ∑ n = 1 ∞ a n cos ( n ω t ) + b n sin ( n ω t ) ∼ a 0 2 + 1 2 ∑ n = 1 ∞ a n ( e i n ω t + e − i n ω t ) + b n ( i e − i n ω t − i e i n ω t ) ∼ a 0 2 + 1 2 ∑ n = 1 ∞ ( a n − i b n ) e i n ω t + ( a n + i b n ) e − i n ω t ∼ ∑ k = − ∞ ∞ c k e i k ω t \begin{aligned}
f(t) &\sim \frac{a_0}{2} + \sum_{n=1}^\infty a_n\cos(n \omega t) +b_n\sin( n\omega t) \\
&\sim \frac{a_0}{2} + \frac{1}{2}\sum_{n=1}^\infty a_n(e^{in\omega t}+e^{-in\omega t})+b_n(ie^{-in\omega t}-ie^{in\omega t}) \\
&\sim \frac{a_0}{2} + \frac{1}{2}\sum_{n=1}^\infty (a_n-ib_n)e^{in\omega t} + (a_n+ib_n)e^{-in\omega t} \\
&\sim \sum_{k=-\infty}^\infty c_ke^{ik\omega t}
\end{aligned}
f ( t ) ∼ 2 a 0 + n = 1 ∑ ∞ a n cos ( n ω t ) + b n sin ( n ω t ) ∼ 2 a 0 + 2 1 n = 1 ∑ ∞ a n ( e i n ω t + e − i n ω t ) + b n ( i e − i n ω t − i e i n ω t ) ∼ 2 a 0 + 2 1 n = 1 ∑ ∞ ( a n − i b n ) e i n ω t + ( a n + i b n ) e − i n ω t ∼ k = − ∞ ∑ ∞ c k e i k ω t
其中c 0 = a 0 / 2 c_0 = a_0/2 c 0 = a 0 / 2 , c k = a k − i b k 2 c_k = \frac{a_k-ib_k}{2} c k = 2 a k − i b k , c − k = a k + i b k 2 = c k ‾ c_{-k} = \frac{a_k+ib_k}{2} = \overline{c_k} c − k = 2 a k + i b k = c k (k > 0 k \gt 0 k > 0 ), 则有:
c k = 1 2 l ∫ − l l f ( t ) e − i k ω t d t ( k ∈ Z ) c_k = \frac{1}{2l}\int_{-l}^l f(t)e^{-ik\omega t}\;\text{d}t \qquad \qquad (k \in \mathbb Z)
c k = 2 l 1 ∫ − l l f ( t ) e − i k ω t d t ( k ∈ Z )
复值函数内积 : 若f ( x ) , g ( x ) f(x),g(x) f ( x ) , g ( x ) 为[ − l , l ] [-l,l] [ − l , l ] 上可积实变复值函数, 其内积为:
⟨ f , g ⟩ = 1 2 l ∫ − l l f ( t ) g ( t ) ‾ d t \langle f,g \rangle = \frac{1}{2l}\int_{-l}^l f(t)\overline{g(t)}\;\text{d}t
⟨ f , g ⟩ = 2 l 1 ∫ − l l f ( t ) g ( t ) d t
{ e i k ω t ∣ k ∈ Z } \lbrace e^{ik\omega t} \vert k \in \mathbb Z\rbrace { e i k ω t ∣ k ∈ Z } 为标准正交函数系.
f ( t ) ∼ ∑ k = − ∞ ∞ c k e i k ω t ∼ ∑ k = − ∞ ∞ ⟨ f , e i k ω t ⟩ e i k ω t f(t) \sim \sum_{k=-\infty}^\infty c_ke^{ik\omega t} \sim \sum_{k=-\infty}^\infty \langle f,e^{ik\omega t} \rangle e^{ik\omega t}
f ( t ) ∼ k = − ∞ ∑ ∞ c k e i k ω t ∼ k = − ∞ ∑ ∞ ⟨ f , e i k ω t ⟩ e i k ω t
Fourier积分 : f ( t ) ∈ C ( R ) f(t) \in\mathscr C(\mathbb R) f ( t ) ∈ C ( R ) 为非周期函数, f l ( t ) f_l(t) f l ( t ) 为f ( t ) f(t) f ( t ) 定义在[ − l , l ] [-l,l] [ − l , l ] 上的部分延拓产生的周期为2 l 2l 2 l 的周期函数(i.e.: f ( t + 2 l ) = f ( t ) f(t+2l) = f(t) f ( t + 2 l ) = f ( t ) ). 若f f f 在任意有限区间上分段单调, 则f f f 可以展开成Fourier级数, 则:
f l ( t ) = ∑ k = − ∞ ∞ c k e i k ω t = ∑ k = − ∞ ∞ ⟨ f , e i k ω t ⟩ e i ω k t = 1 2 l ∑ k = − ∞ ∞ ∫ − l l f ( u ) e i k ω ( t − u ) d u \begin{aligned}
f_l(t) &= \sum_{k=-\infty}^\infty c_k e^{ik\omega t} \\
&= \sum_{k=-\infty}^\infty \langle f,e^{ik\omega t} \rangle e^{i\omega_k t} \\
&= \frac{1}{2l}\sum_{k=-\infty}^\infty \int_{-l}^l f(u)e^{ik\omega(t-u)}\;\text{d}u \\
\end{aligned}
f l ( t ) = k = − ∞ ∑ ∞ c k e i k ω t = k = − ∞ ∑ ∞ ⟨ f , e i k ω t ⟩ e i ω k t = 2 l 1 k = − ∞ ∑ ∞ ∫ − l l f ( u ) e i k ω ( t − u ) d u
考虑构造连续实变量ω k = k ω \omega_k = k\omega ω k = k ω . 则1 2 l = 1 2 π ( ω k − ω k − 1 ) = 1 2 π Δ ω k \frac{1}{2l} = \frac{1}{2\pi}(\omega_k-\omega_{k-1}) = \frac{1}{2\pi} \Delta \omega_k 2 l 1 = 2 π 1 ( ω k − ω k − 1 ) = 2 π 1 Δ ω k . 那么:
f ( t ) = lim l → + ∞ f l ( t ) = lim l → + ∞ 1 2 π ∑ k = − ∞ ∞ Δ ω k ⋅ ∫ − l l f ( u ) e i k ω ( t − u ) d u = lim Δ ω k = π l → 0 1 2 π ∑ k = − ∞ ∞ Δ ω k ⋅ ∫ − l l f ( u ) e i ω k ( t − u ) d u = 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( u ) e i ω ω ( t − u ) d u d ω f ( t ) = 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( u ) e i ω ( t − u ) d u d ω \begin{aligned}
f(t) &= \lim_{l\to+\infty} f_l(t) \\
&= \lim_{l\to+\infty} \frac{1}{2\pi}\sum_{k=-\infty}^\infty \Delta \omega_k \cdot \int_{-l}^l f(u)e^{ik\omega(t-u)}\;\text{d}u \\
&= \lim_{\Delta\omega_k=\frac{\pi}{l} \to 0} \frac{1}{2\pi}\sum_{k=-\infty}^\infty \Delta \omega_k \cdot \int_{-l}^l f(u)e^{i\omega_k(t-u)}\;\text{d}u \\
&= \frac{1}{2\pi}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)e^{i\omega_{\omega}(t-u)}\;\text{d}u\;\text{d}\omega \\
f(t) &= \frac{1}{2\pi}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u)e^{i\omega(t-u)}\;\text{d}u\;\text{d}\omega \\
\end{aligned}
f ( t ) f ( t ) = l → + ∞ lim f l ( t ) = l → + ∞ lim 2 π 1 k = − ∞ ∑ ∞ Δ ω k ⋅ ∫ − l l f ( u ) e i k ω ( t − u ) d u = Δ ω k = l π → 0 lim 2 π 1 k = − ∞ ∑ ∞ Δ ω k ⋅ ∫ − l l f ( u ) e i ω k ( t − u ) d u = 2 π 1 ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( u ) e i ω ω ( t − u ) d u d ω = 2 π 1 ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( u ) e i ω ( t − u ) d u d ω
若f f f 在R \mathbb R R 上绝对可积且在t t t 处连续, 则上述积分式为f ( t ) f(t) f ( t ) 的Fourier积分 .
Fourier变换 : 根据Fourier积分可以定义含参积分:
f ^ ( ω ) = 1 2 π ∫ − ∞ + ∞ f ( u ) e − i ω u d u f ( t ) = ∫ − ∞ + ∞ f ^ ( ω ) e i ω t d ω \begin{aligned}
\hat f(\omega) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(u)e^{-i\omega u}\;\text{d}u \\
f(t) &= \int_{-\infty}^{+\infty} \hat f(\omega)e^{i\omega t}\;\text{d}\omega
\end{aligned}
f ^ ( ω ) f ( t ) = 2 π 1 ∫ − ∞ + ∞ f ( u ) e − i ω u d u = ∫ − ∞ + ∞ f ^ ( ω ) e i ω t d ω
f ^ \hat f f ^ 为f f f 的Fourier变换 , f f f 为f ^ \hat f f ^ 的Fourier逆变换 .
特别地, 由于e i ω u = cos ( ω u ) + i sin ( ω u ) e^{i\omega u} = \cos(\omega u) + i \sin(\omega u) e i ω u = cos ( ω u ) + i sin ( ω u ) , 而sin ( ω u ) \sin(\omega u) sin ( ω u ) 为关于原点的奇函数, 积分为0 0 0 , 故也可写作:
f ^ ( ω ) = 1 2 π ∫ − ∞ + ∞ f ( u ) cos ( ω u ) d u f ( t ) = ∫ − ∞ + ∞ f ^ ( ω ) cos ( ω t ) d ω \begin{aligned}
\hat f(\omega) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(u)\cos(\omega u)\;\text{d}u \\
f(t) &= \int_{-\infty}^{+\infty} \hat f(\omega)\cos(\omega t)\;\text{d}\omega
\end{aligned}
f ^ ( ω ) f ( t ) = 2 π 1 ∫ − ∞ + ∞ f ( u ) cos ( ω u ) d u = ∫ − ∞ + ∞ f ^ ( ω ) cos ( ω t ) d ω
离散Fourier变换 :
若f f f 以2 π 2\pi 2 π 为周期, 则:
f ^ ( n ) = 1 2 π ∫ − ∞ ∞ f ( u ) e − i n u d u f ( t ) = ∑ n = − ∞ + ∞ f ^ ( n ) e i n t \begin{aligned}
\hat f(n) &= \frac{1}{2\pi}\int_{-\infty}^\infty f(u)e^{-inu}\;\text{d}u \\
f(t) &= \sum_{n=-\infty}^{+\infty} \hat f(n)e^{int} \\
\end{aligned}
f ^ ( n ) f ( t ) = 2 π 1 ∫ − ∞ ∞ f ( u ) e − i n u d u = n = − ∞ ∑ + ∞ f ^ ( n ) e i n t
f , g f,g f , g 在R \mathbb R R 上绝对可积, 则:
α f + β g ^ = α f ^ ( t ) + β g ^ \widehat{\alpha f + \beta g} = \alpha \hat f(t) + \beta \hat g
α f + β g = α f ^ ( t ) + β g ^
f ( x ) , f ′ ( x ) f(x),f'(x) f ( x ) , f ′ ( x ) 在R \mathbb R R 上绝对可积且lim t → ∞ f ( t ) = 0 \lim_{t\to\infty} f(t) = 0 lim t → ∞ f ( t ) = 0 , 则:
f ^ ′ ( x ) = ( i x ) f ^ ( x ) \hat f'(x) = (ix)\hat f(x)
f ^ ′ ( x ) = ( i x ) f ^ ( x )
更进一步, 若∀ k ∈ N \forall k \in \mathbb N ∀ k ∈ N , f ( k ) f^{(k)} f ( k ) 在R \mathbb R R 绝对可积且lim t → ∞ f ( k ) ( t ) = 0 \lim_{t\to\infty} f^{(k)}(t) = 0 lim t → ∞ f ( k ) ( t ) = 0 , 则:
f ^ ( k ) ( x ) = ( i x ) k f ^ ( x ) \hat f^{(k)}(x) = (ix)^k \hat f(x)
f ^ ( k ) ( x ) = ( i x ) k f ^ ( x )
f , g f,g f , g 满足常系数微分方程g ( t ) = ∑ k = 0 n a k f ( k ) ( t ) g(t) = \sum_{k=0}^n a_k f^{(k)}(t) g ( t ) = ∑ k = 0 n a k f ( k ) ( t ) , 则:
f ^ = g ^ ∑ k = 0 n a k ( i t ) k \hat f = \frac{\hat g}{\sum_{k=0}^n a_k(it)^k}
f ^ = ∑ k = 0 n a k ( i t ) k g ^
卷积 :
( f ∗ g ) ( t ) = 1 2 π ∫ − ∞ ∞ f ( t − u ) g ( u ) d u (f \ast g)(t) = \frac{1}{2\pi} \int_{-\infty}^\infty f(t-u)g(u)\;\text{d}u
( f ∗ g ) ( t ) = 2 π 1 ∫ − ∞ ∞ f ( t − u ) g ( u ) d u
f , g f,g f , g 在R \mathbb R R 上绝对可积, 则:
f ∗ g ^ = f ^ ⋅ g ^ \widehat{f \ast g} = \hat f \cdot \hat g
f ∗ g = f ^ ⋅ g ^
f , g , h f,g,h f , g , h 满足卷积方程f = g + h ∗ f f = g + h \ast f f = g + h ∗ f , 则:
f ^ = g ^ 1 − h ^ \hat f = \frac{\hat g}{1-\hat h}
f ^ = 1 − h ^ g ^
扫描二维码即可在手机上查看这篇文章,或者转发二维码来分享这篇文章: